• Register
  • Login

AL-Qadisiyah Journal For Administrative and Economic sciences

  1. Home
  2. Sparse ridge Sliced inverse quantile regression without quantile crossing

Current Issue

By Issue

By Author

By Subject

Author Index

Keyword Index

About Journal

Aims and Scope

Editorial Board

Publication Ethics

Indexing and Abstracting

Related Links

FAQ

Peer Review Process

Journal Metrics

News

Sparse ridge Sliced inverse quantile regression without quantile crossing

    Author

    • Ali Jawad Kadhim Alkenani
,
  • Article Information
  • Download
  • How to cite
  • Statistics
  • Share

Abstract

Quantile regression provides a more complete statistical analysis of the stochastic relationships between random variables. While this technique has become very popular as a comprehensive extension of the classical mean regression it nonetheless suffers the problem of crossing of regression functions estimated at different orders of quantiles. Theoretically, the extension of conditional quantiles to higher dimension p of X is straight forward. However, its practical success suffers from the so-called ‘curse of dimensionality’. In this article we propose a method of obtaining quantile regression estimates for high dimension data without the unfavourable quality of quantile crossing. The proposed method is a two step procedure that initially employs sparse ridge sliced inverse regression (SRSIR) to achieve dimension reduction when the predictors are possibly correlated and then followed by the usage of non-parametric method to estimate non-crossing quantile regression. For the second stage of our method we employ double kernel smoothing method (Yu and Jones,1998); monotone-based smoothing method based on the convolution of the distribution (Dette and Volgushev,2008) and joint non-crossing quantile smoothing spline method (Bondell et al., 2010) for estimating the conditional quantile without quantile crossing. Through a simulation and empirical study we compare our estimators with that of Gannon et al. (2004).

Keywords

  • Dimension reduction
  • Sliced inverse regression
  • Conditional quantiles
  • non
  • crossing quantiles
  • XML
  • PDF 0 K
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • VANCOUVER
    • Article View: 93
    • PDF Download: 52
AL-Qadisiyah Journal  For Administrative and Economic sciences
Volume 17, Issue 1
March 2016
Pages 253-273
Files
  • XML
  • PDF 0 K
Share
How to cite
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • VANCOUVER
Statistics
  • Article View: 93
  • PDF Download: 52

APA

Jawad Kadhim Alkenani, A. (2016). Sparse ridge Sliced inverse quantile regression without quantile crossing. AL-Qadisiyah Journal For Administrative and Economic sciences, 17(1), 253-273.

MLA

Ali Jawad Kadhim Alkenani. "Sparse ridge Sliced inverse quantile regression without quantile crossing". AL-Qadisiyah Journal For Administrative and Economic sciences, 17, 1, 2016, 253-273.

HARVARD

Jawad Kadhim Alkenani, A. (2016). 'Sparse ridge Sliced inverse quantile regression without quantile crossing', AL-Qadisiyah Journal For Administrative and Economic sciences, 17(1), pp. 253-273.

VANCOUVER

Jawad Kadhim Alkenani, A. Sparse ridge Sliced inverse quantile regression without quantile crossing. AL-Qadisiyah Journal For Administrative and Economic sciences, 2016; 17(1): 253-273.

  • Home
  • About Journal
  • Editorial Board
  • Submit Manuscript
  • Contact Us
  • Glossary
  • Sitemap

News

Newsletter Subscription

Subscribe to the journal newsletter and receive the latest news and updates

© Journal Management System. Powered by iJournalPro.com