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Abstract 

This paper discusses the Bayesian reciprocal lasso (rlasso) regularization method as variable selection 

procedure that produced the more interpretability model with minimum set off predictor variables in 

right censored limited response variable. The reciprocal lasso introduced the reciprocal of L1-rorm in 

the penalty function of the penalized parameter estimates minimization problem. Reciprocal lasso is 

recently developed as regularization methods that produce a parsimonious regression model. We 

utilized the scale mixture of double Pareto (SMDP) and the scale mixture of truncated normal (SMTN) 

that discussed by Mallick et al. (2020) with a modification for (SMTN) in the hierarchical prior model. 

We used the (SMDP) and the modified (SMTN) in the right censored regression model with real data 

analysis. The results show that the employed two scale mixture types outperform other common 

regularization methods.  

  

Keywords: reciprocal lasso, SMTN, scale mixture of double Pareto, Hierarchical prior model, Gibbs 

sampler. 

1- Introduction 

It is well known that the typical linear regression model is the usual tool of representing the 𝒏 

observations ( 𝑥1, 𝑦1), … ,(𝑥1, 𝑦𝑛) selected randomly and independently from a particular population.  

The response (outcome) variable 𝑦𝑖; 𝑖 = 1, 2, . . . , 𝑛, is  a function of the 𝑝 predictor variables  

𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝  , such that: 

𝑦𝑖 = 𝛽0 + ∑𝑖=1
𝑛 ∑𝑗=1

𝑝
𝛽𝑗𝑥𝑖𝑗 + 𝑢𝑖  , 𝑖 = 1,2,3, … , 𝑛 … . (2.1) 

the matrix form of model (2.1) can be defines as follows, 

𝒚 = 𝑿𝜷 + 𝒖,     … (2.2) 

Where  

𝒚𝒏×𝟏 = (

𝑦1

⋮
𝑦𝑛

), 𝑿𝒏×(𝒑+𝟏) = (

1 𝑥11  ⋯ 𝑥1𝑝

1
⋮

𝑥21

⋮
⋯
⋮

𝑥2𝑝

⋮
1 𝑥𝑛1   ⋯ 𝑥𝑛𝑝

), 

𝜷(𝒑+𝟏)×𝟏 = (

𝛽1

⋮
𝛽𝑝

) , 𝒖𝒏×𝟏 = (

𝑢1

⋮
𝑢𝑛

).
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 𝜷𝑗 are the unknown parameters that we try to estimate and 𝒖 is the random error. Ordinary least 

squares method results are called BLUE if the error term satisfy;  𝐸(𝑢) = 0, 𝑉𝑎𝑟(𝑢) = 𝜎2𝐼, 

𝑢~𝑁(𝑂, 𝜎2𝐼), and Cov (𝑢𝑖, 𝑢𝑗) = 0, where i ≠ j. (Chatterjee and Hadi 2006, AlNasser (2014). 

Following the above assumption of error term and taking the expected of (2.1), we have 

𝐸(𝑦𝑖|𝑥𝑖) = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 = 𝑥𝑖
𝑇𝛽̂ 

Then, the error is as follows, 

𝑢̂ = 𝑦𝑖 − 𝑥𝑖
𝑇𝛽̂                           

The following minimization problem represents the solution of OLS: 

𝑎𝑟𝑔𝑚𝑖𝑛 ∑ (𝑢)2
𝑛

𝑖=1
= 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ (𝑦𝑖 − 𝑥𝑖

𝑇𝛽̂)2
𝑛

𝑖=1
 

So, based on the above minimization problem ,  the ordinary least squares estimator defined by: 

𝛽̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑦      

The OLS estimator in (2.5) is unbiased with smallest variance.  

 

See Chatterjee and Hadi (2013) and AlNasser (2014). 

The analysis of limited dependent (response) variable is widely observed in many applications, where 

there is a boundary or limit on the response variable which means there are some of the values of 𝒚 

reach this limit or boundary. Limited dependent variable leads us to the censored sample which its 

observations are (𝐲𝟏 , 𝐲𝟐 , … , 𝐲𝐧) resulting from a latent variable (𝐲∗) based on some structural function 

form. An awareness of this type of dependent variable is very important, because adopting the 

inappropriate statistical tool will yields unsatisfied regression model. Hence, censored is only for the 

value of the dependent variable. In general there are three types of censoring value (from below (left), 

from above (right), interval). In this paper we are concerning in right censoring data. In the analysis of 

regression model, the number of covariates included in regression model brings the researcher to 

develop the mechanism of variable selection procedure. So, the variable selection procedure treated 

with the regression form specification. Tibshirani (1996) developed new regularization method named 

lasso which gives sparse solution for the linear regression coefficients. Lasso adds penalty function that 

include L1-norm function which controlled by the shrinkage parameter. The parameter estimates for 

some predictor variables reach the zero value and the solution regards as sparse solution. 

 The above mentioned regularization methods are frequents methods. But   Park and Casella (2008) 

was the first work that introduced the Bayesian analysis for the regularization method based on lasso 

linear regression that developed the posterior distribution through new scale mixture for the prior 

distribution. 
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Mallick and Yi (2014) developed new scale mixture that mixed uniform distribution with particular 

gamma distribution (2, 𝜆) as the prior representation of the Laplace distribution. Therefore, based on 

the proposed scale mixture a new lasso solution has developed for the linear regression model, as well 

as, new hierarchical prior model and new Gibbs sampler algorithm have proposed. The new proposed 

model examined by simulation study and the results outperforms the new method over some exists 

regularization methods. Alhamzawi (2016) proposed new Bayesian elastic net in Tobit quantile 

regression model where the proposed method is sparsity. In this paper gamma priors was employed to 

develop the hierarchical prior model. New Gibbs sampler algorithm introduced for the MCMC 

algorithm. Simulation study have conducted to examine the proposed model in terms of variable 

selection procedure, also the proposed method have applied on real data and the results shows 

outperforms of the proposed model comparing with some penalized method. Hilali (2019) proposed a 

transformation for the scale mixture of double exponential prior distribution that developed by Mallick 

and Yi (2014). This new representation of the prior distribution employed into new hierarchical prior 

model and new Gibbs sampler algorithm. Bayesian adaptive lasso Tobit regression has used based on 

the new transformation. Variable selection procedure has examined under this proposed model with 

new posterior distribution. The results of simulation and real data analysis are comparable with some 

exists regularization methods. Flaih et al. (2020) proposed using scale mixture that mixed Rayleigh 

with normal distribution in lasso and adaptive lasso regression. Moreover, the proposed scale mixture 

employed in deriving new hierarchical prior model as well as new Gibbs sampler algorithm. The 

results of simulation real data analysis showed the outperforms of the proposed posterior distribution in 

part of variable selection and the efficiency of the proposed estimator.  

The reciprocal lasso (rlasso) proposed by Song (2014) introduced the following penalty function:  

   𝑃(𝛽, 𝜆) = 𝜆 ∑
1

|𝛽𝑗|

𝑝

𝑗=1
 𝐼(𝛽𝑗 ≠ 0) ⋯ ⋯ ⋯ ⋯ (1) 

where 𝜆 ≥ 0 is shrinkage parameter penalty function gives sparse solutions with infinity penalties , in 

contract of lasso that gives spares solution with  nearly zero penalty funds. The function (1) is 

decreasing in the interval (0, ∞) , Discontinuous at zero. 

Mallick et al. (2020) introduced the reciprocal Bayesian lasso by employing scale mixture of double 

pareto with truncated normal distribution. The liner reciprocal Bayesian lasso estimator is defined as 

follow  

   ℎ(𝛽) =  𝑎𝑟𝑔𝑚𝑖𝑛 𝑅𝑆𝑆 + 𝜆 ∑
1

|𝛽𝑗|

𝑝

𝑗=1
 𝐼(𝛽𝑗 ≠ 0) ⋯ ⋯ ⋯ ⋯ (2)  

Alhamzawi and Mallick (2021) introduced the Bayesian reciprocal lasso quantile regression by defined 

the following estimator:  

 𝑄(𝛽) =  𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝜌(𝑦𝑖 − 𝑥𝑖
𝑇𝛽)

𝑛

𝑖=1

+ 𝜆 ∑
1

|𝛽𝑗|

𝑝

𝑗=1
 𝐼(𝛽𝑗 ≠ 0) 
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Where 𝜌(. ) is the loss function.  

Song (2014) the first work that concerned the reciprocal lasso estimators that have the oracle property. 

This work was discussed the Bayesian variable selection procedure for ultra-high dimensional linear 

regression through the strategy of split-and-merge. The estimators are consistent and have asymptotic 

properties that give better results than the elastic net and lasso methods. Song and Liang (2015), and 

Song (2018) discussed the reciprocal L1-norm Bayesian variable selection in lasso methods. Based on 

the type of the observations of response variable, the regression models are formulated. In many 

applications the observations of response variables are in some known ranges. So, the structural form 

of the regression observations ( censored) are based on unobserved latent variable. 

The Censored model from the below limit (left constraint) is defined as follows: (Maddala, 1993) 

  𝑦𝑖
 = {

𝑦𝑖
∗               𝑖𝑓   𝑦𝑖

∗ ≥ 𝑐
 

𝑐                       𝑖𝑓   𝑦𝑖
∗ < 𝑐

     

Where  𝑦𝑖
∗ = 𝑥𝑖

′𝛽 + 𝑢𝑖 , yi
∗ is the latent variable (unobservable variable). The vector (y1 , y2 , … , yn)  is 

the censured sample and β is the (1 × k)  vector of unknown coefficients, 𝑥𝑖 is the vector of known 

observations (constants), 𝑢𝑖 is the error term, 𝑢𝑖~𝑁(0, 𝜎2), and c is the known constant (censored 

point). Setting 𝑐 = 0 in the above mode structure yields Tobit regression model. 

 The Censored model from the upper limit (upper constraint) is defined as follows:  

   𝑦𝑖
 = {

yi
∗               𝑖𝑓      yi

∗ < 𝑐
 

 𝑐              𝑖𝑓     yi
∗ ≥ 𝑐

… … . (3)    

We can equivalently write (3) as follows: 

𝑦𝑖
 = min(𝑦𝑖

∗, 𝑐)  or   𝑦𝑖
 = 𝛿𝑖𝑦𝑖

∗ + (1 − 𝛿𝑖)𝑐, 

Where 𝛿𝑖 = І(yi
∗<𝑐) is the censoring indicator. 

2- Bayesian Hierarchical Prior models  

Referring to the formula (1), the structure model (3), and with some modification for the above 

proposition and based on the work of Park and Casella (2008), we propose the following hierarchical 

prior model: 

𝑦𝑖
 = {

𝑥𝑖
′𝛽 + 𝑢𝑖                𝑖𝑓     𝑥𝑖

′𝛽 + 𝑢𝑖 < 𝑐
 

 𝑐                           𝑖𝑓     𝑥𝑖
′𝛽 + 𝑢𝑖 ≥ 𝑐

     ,               … (4) 

𝑦𝑖
∗|𝑥𝑖

′𝛽,𝜎2~𝑁(𝑥𝑖
′𝛽, 𝜎2𝐼𝑛);    𝑖 = 1,2, … . 𝑛 

𝑦∗ = 𝑋𝑖
′𝛽 + 𝑒𝑖, 

 𝛽|𝜎2, 𝜏 ~ ∏ 𝑁(0, 𝜎2 𝜏2𝑝
𝑗=1 ) , 
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𝜏1
2, … , 𝜏𝑝

2 ~ ∏
𝛿2

2
𝑒−𝛿2𝜏𝑗

2 2⁄
𝑑

𝑝

𝑗=1

𝜏𝑗
2,   𝜏1

2, … , 𝜏𝑝
2 > 0, 

𝛿2|𝜂~𝐺𝑎𝑚𝑚𝑎 (𝑘, 𝜂), 

𝜂|𝜆 ~ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎 (2, 𝜆), 

𝜎2 ~𝜋(𝜎2) ∝
1

𝜎2
 

3. The Gibbs Sampler for proposed Model 

Now we can implement the hierarchical model (4) with a Gibbs sampler algorithm. The Gibbs sampler 

algorithm is a Markov Chain Monte Carlo (MCMC) algorithm that generates samples from the 

conditional distribution of a specific parameter given all other parameters. The hierarchical model (4) 

constructed in such a way that we can formulate the full conditional distributions which provides easy 

simulation. Now we can write the full joint density as follows: 

𝑓(𝑦∗| β, 𝜎2) 𝜋(𝜎2) ∏ 𝜋(𝛽𝑗|𝜏𝑗
2, 𝜎2)

𝑝
𝑗=1  𝜋(𝜏𝑗

2) 𝜋(𝛿2) 𝜋(𝜂)= 

(
1

√2𝜋𝜎2
)

𝑛

 𝑒
−

1

2𝜎2(𝑦 
∗−𝑋𝛽)′(𝑦 

∗−𝑋𝛽)
   

(
1

𝜎2) ∏
1

(2𝜎2𝜏𝑗
2 )1 2⁄ 𝑒

−
𝛽𝑗

2

2𝜎2𝜏𝑗
2

 
𝑝
𝑗=1

𝛿2

2
𝑒−𝛿2𝜏𝑗

2 2⁄
 

1

𝜂𝑘  𝑒
−

𝛿2

𝜂   
𝜆2

𝛤2
(𝜂)−2−1𝑒

−
𝜆

𝜂  .                     …(5) 

 

Based on the hierarchical model (4) and the full joint density (5) it is easy to sample  

𝑦∗, 𝛽, 𝜎2, 𝜏2, 𝛿2, 𝜂, 𝜆 . The full conditional posterior distributions are as follows: 

1. The full conditional distribution of 𝑦∗ is : 

𝑦𝑖
∗ 𝑦𝑖 , 𝛽⁄ ~ 𝑁𝑛(𝑋𝑖

′𝛽, 𝜎2𝐼𝑛)                                  … (6) 

2. The full conditional distribution of 𝛽𝑗 is : 

𝜋(𝛽 𝑦𝑖
∗⁄ , 𝑋, 𝜏2, 𝜎2) ∝ 𝜋(𝑦𝑖

∗ 𝑋, 𝛽, 𝜎2⁄ ). 𝜋(𝛽 𝜏2)⁄  

     ∝ 𝑒
−

1
2𝜎2(𝑦 

∗−𝑋𝛽)′(𝑦 
∗−𝑋𝛽)

. 𝑒
− 

1
2𝜎2 𝛽′𝐷𝜏

−1𝛽
 

Where 𝐷𝜏 = 𝑑𝑖𝑎𝑔(𝜏1
2, … , 𝜏𝑝

2),  

= exp {−
1

2𝜎2
[(𝛽′(𝑋′𝑋)𝛽 − 2𝑦 

∗𝑋𝛽 + 𝑦 
∗′𝑦 

∗) + 𝛽′𝐷𝜏
−1𝛽]} 

= exp {−
1

2𝜎2
[𝛽′(𝑋′𝑋 + 𝐷𝜏

−1)𝛽 − 2𝑦 
∗𝑋𝛽 + 𝑦 

∗′𝑦 
∗)]} 

Now let 𝐶 = 𝑋′𝑋 + 𝐷𝜏
−1, then we have  

= exp {−
1

2𝜎2
[𝛽′𝐶𝛽 − 2𝑦 

∗𝑋𝛽 + 𝑦 
∗′𝑦 

∗)]} 

= exp {−
1

2𝜎2
(𝛽 − 𝐶−1𝑋′𝑦 

∗)′𝐶(𝛽 − 𝐶−1𝑋′𝑦 
∗)}     …(7) 

Which is the multivariate normal with mean 𝐶−1𝑋′𝑦 
∗and variance  𝜎2𝐶−1. 
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3. The full conditional posterior distribution of  𝜎2 is: 

𝜋(𝜎2 𝑦𝑖
∗⁄ , 𝑋, 𝛽) 

∝ 𝜋(𝑦𝑖
∗ 𝑋, 𝛽, 𝜎2⁄ ). 𝜋(𝛽 𝜎2)⁄ . 𝜋(𝜎2) 

∝ −
1

(𝜎2)
𝑛
2

𝑒
−

1
2𝜎2(𝑦 

∗−𝑋𝛽)′(𝑦 
∗−𝑋𝛽)

.
1

(𝜎2𝜏2)
𝑝
2

𝑒
− 

1
2𝜎2 𝛽′𝐷𝜏

−1𝛽
.

1

𝜎2
 

= (𝜎2)
𝑛
2

 + 
𝑝
2

 −1 exp {−
1

2𝜎2
(𝑦 

∗ − 𝑋𝛽)′(𝑦 
∗ − 𝑋𝛽) + 𝛽′𝐷𝜏

−1𝛽} 

= (𝜎2)
𝑛+𝑝

2
  −1 exp {−

1

2𝜎2 [(𝑦 
∗ − 𝑋𝛽)′(𝑦 

∗ − 𝑋𝛽) + 𝛽′𝐷𝜏
−1𝛽]}   …(8) 

which is the invers gamma with shape parameter 
𝑛+𝑝

2
  − 1 and scale 

parameter (𝑦 
∗ − 𝑋𝛽)′(𝑦 

∗ − 𝑋𝛽) 2⁄ + 𝛽′𝐷𝜏
−1𝛽 2⁄ . 

4. The full conditional posterior distribution of  𝜏2is: 

𝜋(𝜏𝑗
2 𝛿2⁄ , 𝜂) ∝ 𝜋(𝛽 𝜏𝑗

2⁄ ). 𝜋(𝛿2 𝜂)⁄  

∝  (
1

𝜏𝑗
2)

1
2

  

𝑒
− 

1
2𝜎2  

𝛽𝑗
2

𝜏𝑗
2

 𝑒
−   

𝛿2

𝜏𝑗
2

  

∝ (𝜏𝑗
2)

− 
1
2 exp [ − 

1

2
(

𝛽𝑗
2 𝜎2⁄

𝜏𝑗
2 +  𝛿2𝜏𝑗

2)]     ⋯ ⋯ (9) 

The last formula can be treated by using the invers Gaussian distribution and its invers form. Suppose 

that the invers Gaussian is: 

𝑓(𝑋; 𝑎, 𝑏) = (
𝑏

2𝜋𝑋3
)

1
2

  

exp [
−𝑏(𝑋 − 𝑎)2

2𝑎2𝑋
] 

The invers of 𝑓(𝑋; . ) is 𝑓′( . ) defined by 

𝑓′(𝑦 ; 𝑎, 𝑏) = (
𝑏

2𝜋𝑦
)

1
2

  

exp [
−𝑏(1 − 𝑎𝑦)2

2𝑎2𝑦
] 

Where = 𝑋−1 , then a formula (8) Can be rewrite as the reciprocal inverse Gaussian distribution as 

follows:  

  ∝ (
1

𝜏𝑗
2)

−3

2
  

exp [− 
1

2
(

𝛽𝑗
2

𝜎2 𝜏𝑗
2 +

𝛿2

1 𝜏𝑗
2⁄
)] 

∝ (
1

𝜏𝑗
2)

−3

2
  

exp [− 
𝛽𝑗

2((1 𝜏𝑗
2⁄ )−√𝛿2𝜎2 𝛽2⁄ )

2

2𝜎2(1 𝜏𝑗
2⁄ )

] … (9) 

So, we can say that (
1

𝜏𝑗
2) ~𝑖𝑛𝑣𝑒𝑟𝑠 𝐺𝑎𝑢𝑠𝑠𝑎𝑖𝑛 𝑤𝑖𝑡ℎ 𝑚𝑒𝑎𝑛 √

𝛿2 𝜎2

𝛽𝑗
2  and shape parameter 𝛿2 = 𝑏.  

5. By following Park and Casella (2008), we assigned the gamma prior for 𝛿2. Then full 

conditional posterior distribution of  𝛿2 is defined as in follows: 

(𝛿2)𝑘−1𝑒
−

𝛿2

𝜂 (∏
𝛿2

2
𝑒−𝛿2𝜏𝑗

2 2⁄

𝑝

𝑗=1

) 

=(𝛿2)𝑝+𝑘−1 exp [−𝛿2(
1

2
∑ 𝜏𝑗

2 +
1

𝜂

𝑝
𝑗=1 )]    …(10) 

This is also a gamma distribution with shape parameter 𝑝 + 𝑘 and rate parameter  
1

2
∑ 𝜏𝑗

2𝑝
𝑗=1  .  
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6. The full conditional posterior distribution of  𝜂 is defined as follows: 

𝜋(𝜂 𝛿2, 𝜆⁄ ) ∝  𝜋(𝛿2 𝜂⁄ ). 𝜋(𝜂|𝜆) 

∝ (𝛿2)𝑘−1𝑒
−

𝛿2

𝜂  
𝜆2

𝛤2
 𝜂−2−1 𝑒− 𝜆 𝜂⁄   

∝  𝜂−2−1 𝑒
−

1

𝜂
(𝛿2+𝜆) 

        …(11) 

Recall the invers gamma distribution, consequently we can conclude that 𝜂 is distributed according to 

inverse gamma with shape parameter (2) and scale parameter  (𝛿2 + 𝜆). 

The following parameters and variables have sampled based on Gibbs sampling algorithm: 

1- Sampling 𝒚 
∗:  we generate the latent variable 𝑦 

∗ from truncated normal distribution with mean 

(𝒙𝒊
𝑻𝜷) and variance (𝝈𝟐𝑰𝒏). 

2- Sampling 𝜷: we generate 𝜷 from normal distribution 𝑪−𝟏𝑿′𝒚 
∗and variance  𝝈𝟐𝑪−𝟏. 

3- Sampling 𝝈𝟐: we generate 𝝈𝟐 from invers gamma with shape parameter 
𝒏+𝒑

𝟐
  − 𝟏 and scale 

parameter (𝒚 
∗ − 𝑿𝜷)′(𝒚 

∗ − 𝑿𝜷) 𝟐⁄ + 𝜷′𝑫𝝉
−𝟏𝜷 𝟐⁄ . 

4- Sampling 𝝉𝟐 : we generate 𝝉𝟐 from inverse Gaussian with mean  √
𝜹𝟐 𝝈𝟐

𝜷𝒋
𝟐  and shape parameter 𝜹𝟐. 

5- Sampling 𝛿2 : we generate 𝜹𝟐 from a gamma distribution with shape parameter 𝒑 + 𝒌 and rate 

parameter  
𝟏

𝟐
∑ 𝝉𝒋

𝟐𝒑
𝒋=𝟏  . 

6- Sampling 𝜼: we generate 𝜼 inverse gamma with shape parameter (2) and scale parameter  (𝜹𝟐 + 𝝀). 

 4. Extension on proposed Models  

In this section we employed the proposition and the hierarchical model that developed by Mallick et al. 

(2020) in the Bayesian reciprocal Laplace right censored regression model. Scale Mixture of Double 

Pareto (SMDP) formulation proposed by Mallick et al. (2020) which is state that if the prior 

distribution of β is β~Double inverse pareto (η, 1) and η~ inverse gamma (2, λ), then β follows 

inverse Laplace (λ).  

𝑦𝑖
 = {

𝑥𝑖
′𝛽 + 𝑢𝑖                𝑖𝑓     𝑥𝑖

′𝛽 + 𝑢𝑖 < 𝑐
 

 𝑐                           𝑖𝑓     𝑥𝑖
′𝛽 + 𝑢𝑖 ≥ 𝑐

     , 

𝑦𝑖
∗|𝑥𝑖

′𝛽,𝜎2~𝑁(𝑥𝑖
′𝛽, 𝜎2𝐼𝑛);    𝑖 = 1,2, … . 𝑛 

𝛽|𝜂~ ∏
1

𝑢𝑛𝑖𝑓𝑜𝑟𝑚 (−
1
𝜂𝑗

,
1
𝜂𝑗

)

𝑝

𝑗=1

 

𝜂|𝜆~ ∏ 𝐺𝑎𝑚𝑚𝑎(2, 𝜆)

𝑝

𝑗=1

 

𝜎2~ 𝜋(𝜎2)                                                                              (12)        

Connection with Bayesian lasso and reciprocal lasso the full conditional posterior distribution for the 

parameters in hierarchical prior model (5) of the (SMDP) Bayesian reciprocal Laplace right censored 

regression model are as follows Mallick et al. (2020): 

𝑦𝑖
∗ 𝑦𝑖 , 𝛽⁄ ~ 𝑁𝑛(𝑋𝑖

′𝛽, 𝜎2𝐼𝑛)                                   
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𝛽|𝑦 
∗, 𝑋, 𝑢, 𝜆, 𝜎2~𝑁𝑝 (𝛽̂𝑚𝑙𝑒 , 𝜎2(𝑋𝑋́)

−1
) ∏ 𝐼 {|𝛽𝑗| >

1

𝜎2𝑢𝑖

}

𝑝

𝑗=1

, 

𝑢|𝑦 
∗, 𝑋, 𝛽, 𝜆, 𝜎2~ ∏ 𝑒𝑥𝑝(𝜆) 𝐼 {𝑢𝑗 >

1

𝜎2|𝛽𝑗|
} ,

𝑝

𝑗=1

 

𝜎2, 𝑦 
∗, 𝑋, 𝛽, 𝑢, 𝜆~ 𝐼𝑛𝑣. 𝐺𝑎𝑚𝑚𝑎 (

𝑛−1

𝑝
,

1

2
(𝑦 

∗ − 𝑋𝛽)′(𝑦 
∗ − 𝑋𝛽))   

𝜆|𝛽~ 𝐺𝑎𝑚𝑚𝑎(𝑎 + 2𝑝, 𝑏 + ∑
1

|𝛽𝑗|

𝑝
𝑗=1 ).           (13) 

5- Real Data Analysis 

In this section we summarized the described of the real data that we collected from the central 

laboratory and Rafidain's Valley in the province of Babylon. To cope with the objectives of this paper 

we focused on limited dependent response variable (right censored). After employing the simulation 

method to show the preference of our proposed method in estimating parameters and selecting 

variables compared to a group of previous methods. We will test the behavior of our method with real 

data, which also focuses on a medical phenomenon that includes the response variable that represents 

the normal blood sugar level within the range (80-180) for 55 patients. In this study, we focus on the 

normal limits of blood sugar, so the censored point is 180 and when the values are above the censored 

point then it will be set to 180. The independent variables represented are as follows: 

X1: the patient's weight (in kilograms). 

X2: the patient's age. 

X3: the number of meals for the patient per day 

X4: Are there genetic factors? 

X5: Is the patient under psychological pressure? 

X6: Does the patient have pancreatic disease? 

X7: Does the patient have covid19? 

X8: the patient's monthly income 

X9: The number of hours of exercise per day 

For comparison purpose we employed the two proposed regularization methods (SMTN-reciprocal 

Lasso R.C. regression and  SMDP-reciprocal Lasso R.C. regression) with two other methods (R.C. 

regression model and Bayesian lasso R.C. regression) by using the median mean absolute deviation 

(MMAD) and the mean absolute error (MAE) criterion. These criteria are used to assess the prediction 

accuracy of the different models.  

Table (1). Values of MSE and MAE with its Standard errors 

SMTN-reciprocal 

Lasso R.C. 

regression 

SMDP-reciprocal Lasso 

R.C. regression 

Bayesian lasso R.C. 

regression 

R.C. regression model  

0.482(0.328) 0.848(0.495) 0.847(0.506) 0.852(0.493) MSE 

0.573(0.377) 0.712(0.392) 0.757(0.416) 0.848(0.507) MAE 
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Figure (1) shows the values of the MSE and MAE, where the proposed models give the less values 

comparing with the other two methods. This result indicates the high prediction accuracy for the 

proposed models. 

 

Figure (13).  Trace Plot of Real Parameters 
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Figure (1) Histograms of real parameters 

The above figure (1) shows the trace plots for the parameter estimates with the predictor variable 

observations of the (SMDP) model, which indicates the stationary of the proposed MCMC algorithm. 

Also, figure (1) illustrated that the proposed regularization methods gives parameter estimates follows 

the normal distribution under the (SMDP) model.  

5- Conclusions 

We employed the scale mixtures to examine the performance of the introduced Bayesian reciprocal 

lasso in right censored regression model according to the suggested hierarchical model. In addition to 

that we focused on the comparison of the quality of the coefficient estimates and variable selection 

problem with real data. Therefore, we used to criterion to test the performance of coefficient estimation 

methods; the median mean absolute deviation (MMAD) and standard Error (S.E). The real data 

analysis shows that the proposed models give comparable results and outperform the other methods. 

Also, from figure (1) and figure (2) we can conclude that the results of the MCMC algorithm are stable 

in the convergence and the parameter estimates are follows the normal distributions which support the 

theoretical facts in this paper . 
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