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Abstract 

This paper focuses on Bayesian reciprocal lasso regression with right censored response variable. 

Choosing the important variables that relevant on the response variable is very common goal of the 

regression analysis. The reciprocal lasso adds the reciprocal of L1-rorm in the penalty function. 

Reciprocal lasso is a regularization method that provides variable selection procedure with more 

interpretation regression model. We employed the scale mixture of double pareto (SMDP) and the scale 

mixture of truncated normal (SMTN) that proposed by Mallick et al. (2020) and we with some 

modification for (SMTN) in the right censored limited dependent variable. New hierarchical prior 

model and new Gibbs sampler algorithm have developed. Some simulation examples have conducted 

to analysis the behavior of the posterior distributions. The results show that the employed scale mixture 

types outperform other common regularization methods in both of the simulation.  

Keywords: Reciprocal lasso, SMDP, SMTN, Gibbs sampler, Simulation. 

1- Introduction 

Statisticians are formulated the statistical models to solve certain problems. The regression model 

demonstrate the relationship between the dependent (response) variable 𝑌, and one or more 

independent (predictor) variables  𝑋. This relationship defined as,  

     𝑌 = 𝑓(𝑋; 𝛽) + 𝑢 

Where 𝑢𝑖~𝑁(0, 𝜎2), and 𝐸(𝑌)  =  𝑓(𝑋; 𝛽). Then, the linear relationship between the predictor 

variables and the dependent (response) variable take the yellowing function  

    𝑓(𝑋; 𝛽) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑘𝑋𝑘 … … … … (1) 

Where 𝑘 the number of predictor variables. It is very well know that the objective of regression model 

(1) is to find the mean of 𝑌. Many predictor variables included in regression model affect 

Interpretation of the estimated model and maybe inflated the variances of the parameter estimates 

which cause the poor prediction accuracy for the estimated model. So, variable selection procedure is 

essentially used for statistical modeling of many predictor variables problem which recently found in 

many fields of scientific fields. Therefore, we can say that there is another objective of conducting the 

regression analysis which is called model selection. The quality of parameter estimate measured by 

the bias and variance criteria of the estimators and then the prediction accuracy and interpretability 

of the regression model can be examined. See (Chatterjee and Hadi 2006), and (AlNasser 2014) for 

more details. 

Usually the Ordinary least squares (OLS) used to solve (1) by the following minimizing problem of 

Residual Sum of Square (RSS), 

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛽

∑[𝑦 − 𝑓(𝑋; 𝛽)]2

𝑛

𝑖=1
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It is known that OLS estimates are BLUE especially when  (𝑛 ≥ 𝑘) . But when 𝑘 near the sample size 𝑛 

or (𝑘 ≥ 𝑛), the OLS estimate comes with high variances and biased estimates which leads to very 

poor prediction precedence. To overcome this problem in using OLS, one can use the regularization 

method that depends on penalized methods which are also treads the model selection problem. In 

this paper we will focus on the upper limit model.  Also, the upper limit (upper censored) model will 

merge with the variable selection procedure by using the Bayesian regularization reciprocal lasso 

method. Right (upper) censored regression model is more reliable if the variable selection procedure 

has been followed. The analysis of limited dependent (response) variable is widely observed in many 

applications, where there is a boundary or limit on the response variable which means there are some 

of the values of y reach this limit or boundary. Limited dependent variable leads us to the censored 

sample which its observations are (y1 , y2 , … , yn) resulting from a latent variable (y∗) based on some 

structural function form. An awareness of this type of dependent variable is very important, because 

adopting the inappropriate statistical tool will yields unsatisfied regression model. Hence, censored is 

only for the value of the dependent variable. In general there are three types of censoring value (from 

below (left), from above (right), interval). In this thesis we are concerning in right censoring data. 

In the analysis of regression model, the number of independent variables included in regression 

model brings the researcher to develop the mechanism of variable selection procedure. So, the 

variable selection procedure treated with the regression form specification. The residual mean 

squares (RMS) criterion is a model selection tool, smallest the 𝑹𝑴𝑬 the regression model is 

preferred. Efroymson (1960) produced the stepwise method that utilized the model selection 

Forward Selection (FS) and Backward Elimination (BS) methods. The stepwise method calculation 

mechanism depends on the inclusion and deletion of predictor variables. Stepwise method basically is 

a modification of (FS and BE) methods. Mallows (1973) defined the following criterion that is called 

Mallows 𝐂𝐩 criterion to assess the performance of the regression model. Akaike (1973) defined Akaike 

information criterion (AIC), which is a model selection tool, the smallest value of AIC the better 

model. Hocking (1976) introduced an evaluating regression tool which is called all possible equations 

method that provides 𝟐𝒑 equations (𝒑 is the number of independent variables), here 𝑹𝑴𝑬, 𝑪𝒑, and 

 𝑹𝟐 are used to select the best fit model. Schwarz (1978) defined the modified AIC criterion that is 

called Bayes Information criterion (BIC), The smallest value of  BIC the better model. The drawback of 

all possible equations method is when the number of equations getting larger.. One can see Draper 

and Smith (1998), Hastie et al. (2009),  James et al. (2013),  and  Breaux (1967) for more details and 

information. Zou et al. (2007) discussed using BIC criterion in choosing the shrinkage parameter in 

lasso method. 

 But from the regularization function point of view, Hoerl and Kennard (1970a,1970b) introduced the 

ridge regression as procedure to overcome the problem of using the OLS in case of multicollinearty 

that present in the design matrix and/or when p is near n. Ridge regression produced biased 

estimators with small variances. The ridge regression model including parameters estimates that 

shrunk toward zero but not exactly equal to zero and then no variable selection is achieved. The ridge 

estimator defined by:  

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛽

𝑅𝑆𝑆 + 𝜆 ‖𝛽‖2 

Where λ ≥ 0 the shrinkage parameter and  ‖β‖2 is L2 –  norm. Note that if   λ = 0 then  �̂�  =  OLS 

estimates. Tibshirani (1996) developed new regularization method named lasso which gives sparse 

solution for the linear regression coefficients. Lasso adds penalty function that include L1-norm 

function which controlled by the shrinkage parameter. The parameter estimates for some predictor 

variables reach the zero value and the solution regards as sparse solution. So, since we interested in 

Bayesian estimation, the following studies are important to mention: Park and Casella (2008) 
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introduced the Bayesian analysis for the regularization method based on lasso linear regression that 

developed the posterior distribution through new scale mixture for the prior distribution. Mallick and 

Yi (2014) developed new scale mixture that mixed uniform distribution with particular gamma 

distribution (2, 𝜆) as the prior representation of the Laplace distribution. Therefore, based on the 

proposed scale mixture a new lasso solution has developed for the linear regression model, as well as, 

new hierarchical prior model and new Gibbs sampler algorithm have proposed. The new proposed 

model examined by simulation study and the results outperforms the new method over some exists 

regularization methods. Alhamzawi (2016) proposed new Bayesian elastic net in Tobit quantile 

regression model. The proposed method is sparsity. He employed the gamma priors to develop the 

hierarchical prior model. New Gibbs sampler algorithm introduced for the MCMC algorithm. 

Simulation study have conducted to examine the proposed model in terms of variable selection 

procedure, also the proposed method have applied on real data and the results shows outperforms of 

the proposed model comparing with some penalized method. Alhamzawi (2017) proposed new 

hierarchal prior model for the Tobit regression with lasso method. The prior distribution of the 

regression parameters presented as Laplace distribution. The Laplace distribution presented as scale 

mixture mixing uniform distribution with particular gamma distribution. Based on the proposed 

hierarchical prior model new Gibbs sampler algorithm has proposed. Simulation study have 

conducted for Parameter estimation and variable selection, as well real data analysis have examined 

the behavior of  the proposed model which showed that the outperforms comparing with some other 

regularization methods. Hilali (2019) proposed a transformation for the scale mixture of double 

exponential prior distribution that developed by Mallick and Yi (2014). This new representation of the 

prior distribution employed into new hierarchical prior model and new Gibbs sampler algorithm. 

Bayesian adaptive lasso Tobit regression has used based on the new transformation. Variable 

selection procedure has examined under this proposed model with new posterior distribution. The 

results of simulation are comparable with some exists regularization methods. Flaih et al. (2020) 

proposed using scale mixture that mixed Rayleigh with normal distribution in lasso and adaptive lasso 

regression. Moreover, the proposed scale mixture employed in deriving new hierarchical prior model 

as well as new Gibbs sampler algorithm. The results of simulation showed the outperforms of the 

proposed posterior distribution in part of variable selection and the efficiency of the proposed 

estimator. Song and Liang (2014) introduced the reciprocal Bayesian lasso for the high dimensional 

variable selection problem in the linear regression. Song (2015) mentioned that the reciprocal lasso 

estimators have the oracle property. Mallick et al. (2020) introduced the reciprocal Bayesian lasso by 

employing scale mixture of double Pareto with truncated normal distribution. The liner reciprocal 

Bayesian lasso estimator is defined as follow  

   ℎ(𝛽) =  𝑎𝑟𝑔𝑚𝑖𝑛 𝑅𝑆𝑆 + 𝜆 ∑
1

|𝛽𝑗|

𝑝

𝑗=1
 𝐼(𝛽𝑗 ≠ 0) ⋯ ⋯ ⋯ ⋯ (2)  

where 𝜆 ≥ 0 is shrinkage parameter penalty function gives sparse solutions with infinity penalties , in 

contract of lasso that gives spares solution with  nearly zero penalty funds. The function (2) is 

decreasing in the interval (0, ∞) , Discontinuous at zero. The Scale Mixture of Truncated Normal 

(SMTN) formulation proposed by Mallick et al. (2020) which is state that the marginal distribution of 

𝛽 takes inverse Laplace  with parameter (𝜆) if: 

𝛽~𝑁(0, 𝜏), 𝜏~ exp(𝜍2 2⁄ ),  𝜍~ exp(𝜂), and 𝜂~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎 (2, 𝜆). 

Also,  

Alhamzawi and Mallick (2021) introduced the Bayesian reciprocal lasso quantile regression by defined 

the following estimator:  
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 𝑄(𝛽) =  𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝜌(𝑦𝑖 − 𝑥𝑖
𝑇𝛽)

𝑛

𝑖=1

+ 𝜆 ∑
1

|𝛽𝑗|

𝑝

𝑗=1
 𝐼(𝛽𝑗 ≠ 0) ⋯ ⋯ ⋯ (3) 

Where 𝜌(. ) is the loss function.  

2- SMTN Hierarchical Priors for Bayesian models  

Referring to the formula of proposition that Mallick et al. (2020) and based on the work of Park and 

Casella (2008), we propose the following hierarchical prior model scale mixture of truncated normal 

(SMTN): 

𝑦𝑖
 = {

𝑥𝑖
′𝛽 + 𝑢𝑖                𝑖𝑓     𝑥𝑖

′𝛽 + 𝑢𝑖 < 𝑐
 

 𝑐                           𝑖𝑓     𝑥𝑖
′𝛽 + 𝑢𝑖 ≥ 𝑐

     ,   where c is a censored point            … (4) 

𝑦𝑖
∗|𝑥𝑖

′𝛽,𝜎2~𝑁(𝑥𝑖
′𝛽, 𝜎2𝐼𝑛);    𝑖 = 1,2, … . 𝑛 

𝑦∗ = 𝑋𝑖
′𝛽 + 𝑒𝑖, 

 𝛽|𝜎2, 𝜏 ~ ∏ 𝑁(0, 𝜎2 𝜏2𝑝
𝑗=1 ) , 

𝜏1
2, … , 𝜏𝑝

2 ~ ∏
𝛿2

2
𝑒−𝛿2𝜏𝑗

2 2⁄
𝑑

𝑝

𝑗=1

𝜏𝑗
2; 𝑤ℎ𝑒𝑟𝑒   𝜏1

2, … , 𝜏𝑝
2 > 0, 

𝛿2|𝜂~𝐺𝑎𝑚𝑚𝑎 (𝑘, 𝜂), 

𝜂|𝜆 ~ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎 (2, 𝜆), 

𝜎2 ~𝜋(𝜎2) ∝
1

𝜎2
 

3- SMTN Full Conditional Posterior Distributions  

The following parameters and variables have sampled based on Gibbs sampling algorithm: 

3.1- Sampling 𝒚 
∗:  In this step we generate the latent variable 𝑦 

∗ from truncated normal distribution 

with mean (𝒙𝒊
𝑻𝜷) and variance (𝝈𝟐𝑰𝒏). 

3.2- Sampling 𝜷: In this step we generate 𝜷 from normal distribution 𝑪−𝟏𝑿′𝒚 
∗and variance  𝝈𝟐𝑪−𝟏. 

Where 𝐶 = 𝑋′𝑋 + 𝐷𝜏
−1 and 𝐷𝜏 = 𝑑𝑖𝑛𝑔(𝜏1

2, … , 𝜏𝑝
2). 

3.3- Sampling 𝝈𝟐: In this step we generate 𝝈𝟐 from invers gamma with shape parameter 
𝒏+𝒑

𝟐
  − 𝟏 and 

scale parameter (𝒚 
∗ − 𝑿𝜷)′(𝒚 

∗ − 𝑿𝜷) 𝟐⁄ + 𝜷′𝑫𝝉
−𝟏𝜷 𝟐⁄ . 

3.4- Sampling 𝝉𝟐 : In this step we generate 𝝉𝟐 from inverse Gaussian with mean  √
𝜹𝟐 𝝈𝟐

𝜷𝒋
𝟐  and shape 

parameter 𝜹𝟐. 

3.5- Sampling 𝛿2 : In this step we generate 𝜹𝟐 from a gamma distribution with shape parameter 𝒑 + 𝒌 

and rate parameter  
𝟏

𝟐
∑ 𝝉𝒋

𝟐𝒑
𝒋=𝟏  . 

3.6- Sampling 𝜼: In this step we generate 𝜼 inverse gamma with shape parameter (2) and scale 

parameter  (𝜹𝟐 + 𝝀). 

4. Extension on Reciprocal lasso right censored Models  
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In this section we employed the proposition and the hierarchical model that developed by Mallick et al. 

(2020) in the Bayesian reciprocal Laplace right censored regression model. Scale Mixture of Double 

Pareto (SMDP) formulation proposed by Mallick et al. (2020) which is state that if the prior 

distribution of β is β~Double inverse pareto (η, 1) and η~ inverse gamma (2, λ), then β follows 

inverse Laplace (λ).  

𝑦𝑖
 = {

𝑥𝑖
′𝛽 + 𝑢𝑖                𝑖𝑓     𝑥𝑖

′𝛽 + 𝑢𝑖 < 𝑐
 

 𝑐                           𝑖𝑓     𝑥𝑖
′𝛽 + 𝑢𝑖 ≥ 𝑐

     , 

𝑦𝑖
∗|𝑥𝑖

′𝛽,𝜎2~𝑁(𝑥𝑖
′𝛽, 𝜎2𝐼𝑛);    𝑖 = 1,2, … . 𝑛 

𝛽|𝜂~ ∏
1

𝑢𝑛𝑖𝑓𝑜𝑟𝑚 (−
1
𝜂𝑗

,
1
𝜂𝑗

)

𝑝

𝑗=1

 

𝜂|𝜆~ ∏ 𝐺𝑎𝑚𝑚𝑎(2, 𝜆)

𝑝

𝑗=1

 

𝜎2~ 𝜋(𝜎2)                                                                              (5)        

Connection with Bayesian lasso and reciprocal lasso the full conditional posterior distribution for the 

parameters in hierarchical prior model (5) of the (SMDP) Bayesian reciprocal Laplace right censored 

regression model are as follows Mallick et al. (2020): 

𝑦𝑖
∗ 𝑦𝑖 , 𝛽⁄ ~ 𝑁𝑛(𝑋𝑖

′𝛽, 𝜎2𝐼𝑛)                                   

𝛽|𝑦 
∗, 𝑋, 𝑢, 𝜆, 𝜎2~𝑁𝑝 (�̂�𝑚𝑙𝑒 , 𝜎2(𝑋�́�)

−1
) ∏ 𝐼 {|𝛽𝑗| >

1

𝜎2𝑢𝑖

}

𝑝

𝑗=1

, 

𝑢|𝑦 
∗, 𝑋, 𝛽, 𝜆, 𝜎2~ ∏ 𝑒𝑥𝑝(𝜆) 𝐼 {𝑢𝑗 >

1

𝜎2|𝛽𝑗|
} ,

𝑝

𝑗=1

 

𝜎2, 𝑦 
∗, 𝑋, 𝛽, 𝑢, 𝜆~ 𝐼𝑛𝑣. 𝐺𝑎𝑚𝑚𝑎 (

𝑛−1

𝑝
,

1

2
(𝑦 

∗ − 𝑋𝛽)′(𝑦 
∗ − 𝑋𝛽))   

𝜆|𝛽~ 𝐺𝑎𝑚𝑚𝑎(𝑎 + 2𝑝, 𝑏 + ∑
1

|𝛽𝑗|

𝑝
𝑗=1 ).           (5) 

 

4.1 Simulation Experimental 

As the number of variables (parameters) getting larger in our model, the more difficulty in evaluating 

and analyzing the posterior distribution. Here is where the Gibbs sample algorithm becomes quite 

useful.  Gibbs sample is a special case of MCMC technique and hence we can use the results of 

MCMC algorithm to make inference about the model and its parameters. We conducted some 

simulation examples to test the efficiency of the Gibbs sampler algorithm that mention in the 

theoretical chapter. Comparison is the main goal with some other regularization methods. We run the 

algorithm 12000 iterations with 2000 iterations have burned-in for reaching the stationary of posterior 

distribution by using R programming language.  

4.2 Simulation Scenarios  

In this subsection we are trying to simulate some scenarios for checking the efficiency of the proposed 

posterior distributions by using the Gibbs sampler algorithm. For the comparing purpose we have used 

the R.C. (right censored) regression model, Bayesian lasso R.C. regression, SMTN-reciprocal 

Lasso R.C. regression, and SMDP-reciprocal Lasso R.C. regression. As well as, we employed three 

different values of standard deviations (to guarantee the unimodel posterior distribution) for the 
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regression models.  Also, the criterions of Median of Mean Absolute Error (MMAE) and the Standard 

Deviation (S.D.) have used for assessing the quality of the estimated model. 

𝑴𝑴𝑨𝑬 = 𝑴𝒆𝒅𝒊𝒂𝒏 (𝒎𝒆𝒂𝒏 |�̂� − 𝒇|) 

  �̂� = 𝒙𝒊
𝑻𝜷𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅  and  𝒇 = 𝒙𝒊

𝑻𝜷𝒕𝒓𝒖𝒆  . 

we introduced the scenario of the data generating process as following: 𝑌 = 𝑋𝛽 + 𝑢 where 𝑋~𝑁(0,1), 

and  𝑢~𝑁(0, 𝜎2). The correlation between the 𝑋𝑖 and 𝑋𝑗 is defined by 𝜌|𝑖−𝑗|.  Since the predictor 

variables have 𝜎2 = 1, then the design matrix of the predictor variables follows the multivariate normal 

distribution with mean equals to zero and variance-covariance matrix equal to Σ, where 𝜮𝑖𝑗 = 𝜌|𝑖−𝑗|. 

The regression model that describe the true relationship between the response variable and predictor 

variables is defined as follows: 

4.3 Simulation Example 

In this example and based on the same process in the sample, we supposed the following dense true 

parameter vector, 𝜷 = (𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓)𝑻 and then the true 

regression model is defined as follows: 

 

𝒚𝒊 = 𝟎. 𝟖𝟓𝒙𝒊𝟏 + 𝟎. 𝟖𝟓𝒙𝒊𝟐 + 𝟎. 𝟖𝟓𝒙𝒊𝟑 + 𝟎. 𝟖𝟓𝒙𝒊𝟒 + 𝟎. 𝟖𝟓𝒙𝒊𝟓 + 𝟎. 𝟖𝟓𝒙𝒊𝟔 + 𝟎. 𝟖𝟓𝒙𝒊𝟕 + 𝟎. 𝟖𝟓𝒙𝒊𝟖

+ 𝟎. 𝟖𝟓𝒙𝒊𝟗 + 𝒖𝒊        ;  𝒊 = 𝟏, 𝟐, … … … … . 𝒏 = 𝟐𝟎𝟎 

 

The following table shows the values of the MMAD and its S.E. criterions.  

Table (1)  MMAD and S.E. values for simulation  

Sample size  The methods 

---------------- 𝜎2 R.C. regression 

model 

Bayesian lasso R.C. 

regression 

SMTN-

reciprocal Lasso 

R.C. regression 

SMDP-

reciprocal Lasso 

R.C. regression 

 

n=25 

1 0.984(0.634) 0.816(0.621) 0.872(0.622) 0.454(0.264) 

3 0.754 (0.762) 0.758 (0.875) 0.824 (0.572) 0.464 (0.264) 

5 0.737(0.565) 0.862(0. 567) 0.806(0.661) 0.401(0.308) 

 

n=50 

1 0.762(0.351) 0.933(0.657) 0.831(0.530) 0.536(0.364) 

3 0.725 (0.506) 0.928 (0.634) 0.756 (0.368) 0.585 (0.358) 

5 0.831(0.604) 0.986(0.637) 0.952(0.764) 0.465(0.288) 

 

n=100 

1 0.864(0.534) 0.769(0.437) 0.837(0.375) 0.504(0.359) 

3 0.675 (0.487) 0.834(0.506) 0.935 (0.346) 0.537 (0.325) 

5 0.839(0.534) 0.864(0.638) 0.738(0.428) 0.468(0.283) 

 

n=150 

1 0.837(0.535) 0.953 (0.531) 0.836 (0.528) 0.524 (0.385) 

3 0.626 (0.635) 0.768 (0.375) 0.739 (0.425) 0.573 (0.345) 

5 0.768 (0.539) 0.752 (0.437) 0.734 (0.418) 0.454 (0.209) 

 

 

n=200 

1 0.853 (0.567) 0.952 (0.634) 0.769 (0.548) 0.573 (0.306) 

3 0.961 (0.428) 0.674 (0.534) 0.542 (0.392) 0.561 (0.286) 

5 0.724 (0.579) 0.865 (0.635) 0.767 (0.549) 0.468 (0.372) 

 1 0.926 (0.526) 0.758 (0.457) 0.824(0.586) 0.589 (0.242) 
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n=250 

3 0.864 (0.452) 0.861 (0.537) 0.735(0.426) 0.453 (0.276) 

5 0.736 0.573 0.647 (0.522) 0.655 (0.514) 0.321 (0.216) 

 

From table (1), values of MMAD and  its S.E. that calculated based on the proposed regression models 

(SMTN-reciprocal Lasso R.C. regression) and (SMDP-reciprocal Lasso R.C. regression) are less than the 

values of other different methods (R.C. regression model) and (Bayesian lasso R.C. regression). 

Therefore, the proposed models are comparable in terms of estimation accuracy and variable selection 

point of views through all the values of error distribution and the sample sizes.  

 

Figure 1. Trace plots of the parameter estimates β1 − β8. 

The above figure (1) shows the trace plots which illustrate no flat bits and that MCMC algorithm suffer 

no slow mixing. 
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Figure (2) Histograms of parameter estimates  β1 − β8. 

Figure (2) shows the distributions of the parameter estimates β1 − β8 and it is very clear that the 

distribution of the parameter follows the normal distribution for all parameter estimates. 

 

Figure (3) True vector and parameter estimates  β1 − β8 with sample size=25 
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Figure (4) True vector and parameter estimates  β1 − β8 with sample size=100 

 

Figure (5) True vector and parameter estimates  β1 − β8 with sample size=250 

Figures (3) to (5) represented the parameter estimates by the proposed models in addition to other two 

models, where the blue line (true vector) compared with the parameters estimates under different 

sample sizes and different estimation method. Therefore, clearly that the blue line is much closed to 

the parameter estimates for the proposed models (colored bars), so we can say that the proposed 

model (SMDP) gives the best fit and the (SMTN) model is comparable with the other methods under 

the different sample sizes. 

Conclusions 

New scale mixture of Rayleigh distribution mixing with normal distribution have developed as the 

prior distribution of the Laplace distribution. Consequently, we produced new Bayesian hierarchical 

model for elastic net in linear regression. Gibbs sampler algorithm have developed have developed to 

examine the convergence of the proposed posterior distributions. Some simulation scenarios have 

implemented based on the proposed model. The result of simulation shows that the proposed method 

clearly outperforms the other method from the variable selection procedure view.  
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