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Abstract 

Model selection has become the widely used method to include the relevant predictor variables on the response variable and 

to remove the irrelevant variables. Bayesian penalized methods such as the elastic net methods are used to address the 

problem of grouping predictor variables effects. In this paper we concentrated on the sparsity procedure in linear regression 

model by using elastic net regularization method. We developed Bayesian elastic net by employing the scale mixture of 

normal distribution mixing with Rayleigh distribution as Laplace prior distribution for the regression parameters. The new 

scale mixture generates normal mixing with truncated gamma distribution, also we proposed new Gibbs sample algorithm. 

The proposed Bayesian elastic net method examined by applying real data some and the results shows that the proposed 

model is comparable with the other regularization methods.   

Keywords: Bayesian, Elastic net, Hierarchical prior model, Gibbs sampler, sparsity. 

1-Introduction 

Obviously the regression analysis methods are very widely popular tools that investigated the relationship between the 

response variable and the independent variable(s). This motivated many authors and researchers to develop various 

regression analysis tools that cope with the practical underlying situation. The ordinary least squared (OLS) method is very 

common tool to find the regression coefficient estimates. Moreover, violated the assumptions of (OLS) was the key idea 

behind searching for substitution methods for regression coefficient estimates. 

 In addition for that the investigation about the more explanation model developed along with the model selection and 

variable selection procedures. The Ordinary Least Squares provided unbiased and smallest variance parameters estimates 

through minimizing of the Residual Sum of Squares (RSS),                                                                                                                                        

RSS(β) = (𝑦𝑡𝑟𝑢𝑒 − f(X;  β))2 

Regression analysis attempts to estimate the population average of the response variable by using the information that the 

predictor variables are provided. The parameter estimates of regression model are reliable estimates if it offers balance 

between the variance and bias, in addition to the model explain ability. 

 It is well known that the OLS estimates are biased and inconsistent (inflated variance) when the multicollinearity problem 

appear in the design matrix  X, or when the number of predictor variable p exceed or near the number of observations n. 

Therefore, in these circumantance the OLS estimates are usually not unique and instable with high variances. The high 

variance in the OLS estimates motivated the authors to explore the regularization methods that used to overcomes the 

limitations of least squares estimates quality, James et al. (2013).  

The ridge regression method adding a penalty function to residuals sum of squares (RSS) to address the problem 

multicollinearly, where the penalty function contains the L2-norm. The ridge parameter estimates cannot set to zero, Hoerl 

and Kennard (1970). 

 (Tibshirani, 1996) produced Lasso method which is essentially regards as penalized method that provide variable selection 

procedure. Consequently, many authors developed other shrinkage methods to provide variable selection procedure; such as, 

relaxed lasso, fused lasso, adaptive lasso, elastic net, etc. Model selection procedure in regression analysis aims to select the 

best fit estimated regression model through selecting the relevant predictor variables that affects the response variable and 

remove the irrelevant variables. In thesis I consider the linear regression model where the ordinary least squares (OLS) 

estimates are no longer achieved by minimizing the residual sum squares (RSS). 

 Instead of the OLS the elastic net have discussed in this thesis, elastic net is the flexible regularization and variable selection 

method that combined two of penalties function. Moreover, the Elastic Net (EN) is another penalized method that proposed 

by Zou and Hastie (2005) to address the limitations of lasso method. EN method combined the ridge and lasso to the RSS 
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term, EN method deal with many relevant predictors that have highly pairwise correlation and EN usually works better than 

lasso, Osborne et al.(2000a). Obviously the regression analysis methods are very widely popular tools that investigated the 

relationship between the response variable and the independent variable(s).  

This motivated many authors and researchers to develop various regression analysis tools that cope with the practical 

underlying situation. The ordinary least squared (OLS) method is very common tool to find the regression coefficient 

estimates. Moreover, violated the assumptions of (OLS) was the key idea behind searching for substitution methods for 

regression coefficient estimates. In addition for that the investigation about the more explanation model developed along with 

the model selection and variable selection procedures. The Ordinary Least Squares provided unbiased and smallest variance 

parameters estimates through minimizing of the Residual Sum of Squares (RSS).                                                                                                                                        

In regression analysis, the set of the independent variable that should be included in regression equation bring the attention of 

the researcher, because it is the first part of the regression analysis and then examine to see whether regression equation was 

correct. So, the variable selection problem related with the regression form specification. The residual mean squares (RMS) 

is a criterion for model selection, the smallest the RMS between two regression equation is preferred.  

𝑅𝑀𝐸 =
𝑆𝑆𝐸

𝑛 − 𝑘
 

Where 𝑘 is the number of independent variables and 𝑆𝑆𝐸 is the sum of squares error. 

Mallows (1973) developed the Mallows Ck criterion to judge the performance of the regression function by using the from 

following. 

 

Ck =
𝑆𝑆𝐸𝑘
s2

+ (2k − n), 

Where s2 is the estimated variance. 

Akaike (1973) introduced the Akaike information criterion (AIC) as model selection criterion that combined the most fit 

equation and the smaller number of independent variables, the AIC defines as follows, 

𝐴𝐼𝐶𝑘 = 𝑛l𝑛 (
𝑆𝑆𝐸𝐾
𝑛

) + 2𝑘, 

The smallest AIC value the better model. 

Schwarz (1978) proposed a modification of the AIC is called Bayes Information criterion (BIC) which is defines as follows,  

𝐵𝐼𝐶𝑘 = 𝑛l𝑛 (
𝑆𝑆𝐸𝐾
𝑛

) + 𝑘(ln 𝑛), 

The smallest BIC value the better model. 

Zou et al. (2007) discussed the using of of BIC criterion to choose the shrinkage parameter in lasso method. Hocking (1976) 

list the evaluating regression method that is called all possible equations which is gives 2k equations (k is the number of 

independent variables), where we can use the (RME, Ck, R
2) to select the best model.  

The limitation of all possible equations is the larger number of equations when k getting larger. Efroymson (1960) introduced 

the stepwise method as variable selection procedure combined the mechanism of both Forward Selection (FS) Procedure and 

Backward Elimination (BS) procedure. The calculation of the stepwise method depends on the inclusion and deletion of 

independent variables, it is essentially a modification method for (FS and BE) methods.  

The AIC and BIC are used for select the best fitted model in the stepwise method. It is recommended obtaining the variance 

inflation factors (VIF) test or the eigenvalues of the correlation matrix of the independent variables as a first step to variable 

selection procedure. 

 George and McCulloch (1993) proposed another method for utilizing an information criterion for model selection; this 

method is called stochastic search variable selection. This method can be used in the well know Bayesian algorithm , so it is 

depends on the probabilistic considerations in selecting of the subsets of independent variables.  
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 Hoerl and Kennard (1970) introduced a theory about ridge regression with penalized function to estimate the parameters of 

multiple regression model by adding a small positive quantity (λ) to the inverse of (XtX) matrix to address the problem of 

linearly dependent (correlation) of the independent variable. The ridge estimator is biased but with the smallest variance. 

Also, ridge methods can be applied in the case of (n ≥ k) and regards as regularization method. But ridge regression is not a 

variable selection method. Ridge uses the L2-norm as penalty function.The response variable in ridge regression is centered , 

Draper and Smith (1998). Tibshirani (1996) proposed the new variable selection method that is called Lasso. Lasso method 

can be regards as regularization method that adds the L1-norm penalty function to the RSS. Due to the L1-norm, lasso 

provides variable selection procedure by setting the parameter estimates to zero. 

 Also, in this paper there is a remarkable note about Bayes estimation for the linear regression model based on assuming that 

the parameter β is follows the double exponential distribution as prior density. Hans (2009) introduced Bayesian estimation 

for lasso regression coefficients. New Gibbs sampling algorithm have developed by imposed directly the Laplace prior on the 

lasso regression parameters and a gamma prior on the tuning parameter. The results emphases that the classical lasso results 

did not matching the Bayesian results in terms of prediction. 

  Yuan and Lin (2006) introduced the so called group lasso as new regularization method; the group lasso is a generalization 

for the lasso method. Group lasso method essential founded to deal with problem of selected grouped independent variables. 

Lasso selected individual independent variables but group lasso can select a set of small groups of independent variable. 
Efron et al. (2004)  introduced algorithm to compute the lasso estimate this algorithm is called LARS. LARS used for sake of 

model selection; they proved that it is takes short time for computational implementation in lasso. 

Kyung et al. (2010) introduced the Bayesian estimation for the linear regression with proposed hierarchal models. The Gibbs 

sample algorithm have developed for the lasso, elastic net, group lasso, and fused lasso methods. The results showed that the 

proposed hierarchal model outperforms the LARs algorithms from the Bayesian perception. Ghosh (2007) and Zou and 

Zhang (2009) introduced two adaptive elastic net regularization methods. These new regularization methods focused on the 

limitation of lasso in dealing with presence of grouped independent variable and the inconsistent of estimators. The adaptive 

lasso overcomes the problem of inconsistent estimator by imposing weights for the different parameters. Also, adaptive 

elastic net estimators have oracle properties (normality and consistent). We can say that this method is combining of adaptive 

lasso and elastic net. 

Celeux et al. (2012) showed that lasso has not the ability to detect the effects of grouped variables. Also, they stated that the 

variable selection with Bayesian perception outperforms the variable selection with lasso and elastic net methods based on 

the efficiency criterion. 

 Hans (2011) introduced new Gibbs sampler algorithm to find the solution for the Bayesian estimates using the elastic net 

method. In this paper the values of the shrinkage parameters (λ1 and λ2) are used based on the 10-fold cross validation 

method. Also, the scale mixture of normal has used to make the computational of the Gibbs sampler algorithm easier. The 

proposed Gibbs sample algorithm considered as an alternative to SSVS method. 

  Zou and Hastie (2005) introduced the so called elastic net, which is regards as regularization method that combined the 

ridge and lasso methods. It can be considered as variable selection method that works simultaneously as variable selection 

and shrinkage method. Furthermore, the elastic net dealing well with a grouping effect of correlated independent variables as 

contrast of lasso.  

Li and Lin (2010) introduced the parameter estimation of the elastic net model from the Bayesian perception. By using the 

Gibbs sampler algorithm based on considering that the prior density is a scale mixture of normal mixing with truncated 

Gamma. The linear regression model studied for variable selection and prediction accuracy, the proposed model outperform 

in variable selection procedure and is a comparable model in the terms of prediction accuracy.  

Park and Casella (2008) developed Gibbs sample algorithm based on new Bayesian hierarchal prior model. The scale 

mixture of normal mixing with exponential density have used as representation form for the double exponential prior 

distribution through the lasso linear regression. The results are very similar for the classic lasso results.  

Rahim and Haithem (2018) introduced new Bayesian elastic net regularization method for variable selection and parameter 

estimation in linear regression. New hierarchical form prior model have developed based on the location-scale mixture of 

normal mixing with gamma density.  The simulation results and real data analysis results showed the outperforms of the 

proposed model. 

 Mallick and Yi (2014) introduced new Bayesian lasso method that depends on new representation of the double exponential 

prior density as scale mixture of uniform mixing with special case of gamma distribution. Variable selection procedure has 

performed and parameter estimation explained based on the new lasso method. 
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 Alhamzawi (2016) proposed the Tobit quantile Bayesian elastic net regression model. The variable selection procedure and 

coefficients estimation have developed through new Bayesian hierarchal prior model. The gamma priors have used in Gibbs 

sample algorithm. The results showed that from the simulation examples and real data analysis that the proposed model 

outperforms other methods.  

Flaih et al. (2020) introduced new scale mixture of normal mixing Rayleigh density to represent the double exponential prior 

density. New hierarchal prior model have developed and therefore new Gibbs sample algorithm have implement to calculate 

the mode of the posterior density of lasso regression model parameter. The proposed model is comparable in terms of 

variable selection and estimation accuracy. Fadel et al. (2020) developed an extension for lasso Tobit and adaptive lasso 

Tobit regression models based on the proposed scale mixture in Flaih et al. (2020). In this paper there are two ideas and one 

comparative study which are as follows: 

1. To propose new Bayesian hierarchical model that consider the Laplace prior distribution as Scale mixture of normal 

mixing with Rayleigh distribution. 

2. To combine the Bayesian model selection problem with the penalized elastic net linear regression model under the prior 

distribution mention in idea One. 

3. To perform a comparative study between the Bayesian penalized elastic net that proposed in idea one and the classical 

elastic net. 

2-Bayesian Hierarchical Prior models 

        Elastic net penalized method is very common used in regression model as a regularization method which combine the 

ridge and lasso penalty functions. Zou and Hastie (2005) introduced the elastic net method as sparsity procedure that can deal 

with the effect of correlated variables in  of covariates , the elastic net estimator is defined as follows : 

β̂ = argmin ‖y − Xβ‖2
2
+ λ1‖β‖1 + λ2‖β‖

2. . .     ( 1 )   

Where the elastic net penalized function is   

h(β) =  λ1‖β‖1 + λ2‖β‖
2
 
 

here λ1 ≥ 0  and  λ2 ≥ 0 the penalties parameters. 

         Flaih et al. (2020) introduced the Bayesian lasso regression model based on scale mixture representation (3.3). In this 

thesis I assumed the above formula (3.3) by considering the linear regression model:  

E ( y / X, β) = Xβ 

Suppose that the scale mixture of Laplace distribution that mixing normal with Rayleigh distribution defined as follows, 

If x/y~N (μ , y2) with y~Ray (b), then x~Laplace (μ, b), that is: 

 

1

2b
e−

|x−μ|

b = ∫
1

√2πy2
e
−
(x−μ)2

2y2
∞

0

y

b
e−

y2

2b dy   …    ( 2 ) 

 

by letting μ=0, X =β, and   b = 
σ2

λ1
   ,  then (3.3) become as follows : 

λ1

2σ2
e
−
λ1|β|

2σ2 = ∫
1

√2πy2

∞

0
e
−
βj
2

2y2
λy

σ2
e
−
λ1y

2

2σ2  dy  …    ( 3 ) 

Zou and Hastie (2005) introduced the prior distribution of elastic net method  π(β) as: 
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π(β)  ∝ e−λ1‖β‖
1
−λ2‖β‖2

2
  ,          ...    ( 4 ) 

Then by multiplying both sides of (3.5) with 𝑒−𝜆2‖𝛽‖2
2
 , we get the scale mixture that cope with the prior (3.6),  

𝜆1

2𝜎2
e
−
𝜆1|𝛽𝑗|

2𝜎2
−
𝜆2𝛽𝑗

2

2𝜎2
 
=∫

1

√2𝜋𝑦2

∞

0
𝑒
−
𝛽𝑗
2

2𝜎2𝑒
−
𝜆2𝛽𝑗

2

2𝜎2
𝜆1

𝜎2
𝑒
−
𝜆1𝑦

2

2𝜎2   dy 

= ∫
1

√2𝜋𝑦2
𝑒
−
𝛽𝑗
2

2
(
1

𝑦2
+
𝜆2
𝜎2
) 𝜆1𝑦

𝜎2
𝑒
−
𝜆1𝑦

2

2𝜎2
∞

0
  dy 

Let  
1

√𝑦2
= 

√
1

𝑦2
+ 
𝜆2
𝜎2

√1+
 𝜆2 𝑦

2

𝜎2
 

   , then 

∫ √
1

𝑦2
+

𝜆2

𝜎2

∞

0
   e

−
𝛽𝑗
2

2
(
1

𝑦2
+ 
𝜆2
𝜎2
) 
 .

1

√1+
 𝜆2 𝑦

2

𝜎2
 

  
 𝜆1 𝑦

 

𝜎2
  𝑒

−
𝜆1𝑦

2

2𝜎2      𝑑𝑦 

Let t = 1 +
 𝜆2  𝑦

2

𝜎2
      →

1

𝑡−1
=

𝜎2 

𝜆2 𝑦
2 

and 

1

𝑦2
+ 
𝜆2
𝜎2

=
𝜆2
𝜎2
 ( 1 + 

𝜎2 

𝜆2𝑦
2
 ) =  

𝜆2
𝜎2
 (

𝑡

𝑡 − 1
) 

From t = 1 + 
 𝜆2 𝑦

2

𝜎2
   if  y=0  , and 𝑦 = ∞  , we get  𝑡 ∈ (1,∞) 

𝜆1

2𝜎2
e
−

1

2𝜎2 
 (𝜆1|𝛽𝑗|

 
+ 𝜆2𝛽𝑗

2) 
∝∫ √

𝜆2

𝜎2
(
𝑡

𝑡−1
)

∞

1
 𝑒
−
𝛽𝑗
2

2
(
𝜆2
𝜎2
(
𝑡

𝑡−1
))
𝑡−

1

2
𝜆1𝑦

𝜎2
𝑒
−
𝜆1
2𝜎2

 
𝑡𝜎2

𝜆2
𝜎2

𝜆22𝑦
𝑑𝑦 

∝  ∫ √
𝑡

𝑡 − 1
 √
𝜆2
𝜎2
 𝑒
−
𝛽𝑗
2

2
(
𝜆2
𝜎2
(
𝑡
𝑡−1

))
∞

1

𝑡−
1
2 𝑒

−
𝜆1
2𝜆2  𝑡 𝑑𝑡 

∝  ∫ √
𝜆2

𝜎2
 
𝑡

𝑡−1
𝑒
− 
𝛽𝑗
2

2
 (
𝜆2
𝜎2
 
𝑡

𝑡−1
)
 𝑡− 

1

2 𝑒
− 
𝜆1𝑡

2𝜆2 𝑑𝑡         
∞

1
... (3.7) 

From (4), we can deal with  βj/σ
2 as Scale mixture of normal distributions N (0,

σ2(t−1)

λ2 t
 ) mixing truncated gamma with shape 

parameter (1/2) and Scale parameter ( 
2λ2

λ1  
), see Almusaedi and Flaih (2021a, 2021b),  Alsafi and Flaih (2021) for more 

information. By formula (4), we have the following elastic net linear regression (ENLR) hierarchical model,  

y = Xβ + e ,

y|X , β , σ2 ~ N (Xβ , σ2 In ),

β |λ 2, σ
2, t~∏N (0, ( 

λ 2
σ2
 
tj

tj − 1
 )

−1p

j=1

)

t|λ 1, λ
 
2∏truncated gamma (

1

2
 ,
2λ 2
λ 1

) ; t ∈ (1,∞),

p

j=1

σ2 ~  Inverse Gamma }
 
 
 
 

 
 
 
 

…    ( 5 ) 
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3- Full Conditional Posterior Distributions of ENLR  

        By using the hierarchical model (5), the full joint distribution is well defined as follows: 

𝜋(𝛽׀𝑦, 𝑋 , 𝜎2 , 𝑡) ∝  𝜋(𝑦/𝑋 , 𝛽 , 𝜎2) 

𝑓 (𝑦׀𝛽, 𝜎2) 𝜋 (𝜎2) ∏ 𝜋 (𝛽𝑗|  𝑡𝑗  , 𝜎
2 )

 
𝜋(𝑡𝑗)

𝑝
𝑗=1    = 

(
1

√2 𝜋 𝜎2
)
𝑛

 𝑒
−

1

2 𝜎2
 ( 𝑦−𝑋𝛽)′(𝑦−𝑋𝛽)

  .  
𝜏𝛼

√𝛼
  (𝜎2)−𝛼−1  𝑒

−
𝜏

𝜎2                                                                                               

∏ √
𝜆 2 𝑡

𝜎2 (𝑡−1)

𝑝
𝑗=1     𝑒

− 
𝛽𝑗
2

2
(
𝜆 2 

𝜎2 
 .  

𝑡

(𝑡𝑗−1)
)
   𝑡−

1

2  𝑒
− 𝜆1
2𝜆 2

 𝑡
  ...     ( 6 ) 

 Remark that, y variable is centered and x is standardized. Now the full conditional posterior distributions are as follows: 

The parts that includes  𝛽, π(𝛽) in the joint distribution (6) is  

e
−

1

2 σ2
 ( y−Xβ)′(y−Xβ)−

1

2σ2
λ2β

ʹ A β
       , where  𝐴 = (

𝑡

𝑡−1
) 

= exp [−
1

2 𝜎2
 {(𝛽′ (𝑋′𝑋) 𝛽 − 2𝑦𝑥𝛽 + 𝑦ʹ𝑦) + 𝜆 2 𝛽

′ 𝐴 𝛽 }] 

= exp [−
1

2𝜎2
{𝛽ʹ(𝑋 ʹ𝑋 + 𝜆2𝐴)𝛽 − 2𝑦𝑋𝛽 + 𝑦

ʹ𝑦}] 

= exp [−
1

2 𝜎2
 {(𝛽ʹ 𝐶𝛽 − 2𝑦𝑥𝛽 + 𝑦 ʹ𝑦) }] 

Where    C= 𝑋 ʹ𝑋 + 𝜆2𝐴 

exp {−
1

2𝜎2
(𝛽ʹ𝐶𝛽 − 2𝑦𝑋𝛽 + 𝑦ʹ𝑦)} ...     ( 7 ) 

Let (𝛽 − 𝐶−1𝑋 ʹ𝑦)
ʹ
𝐶(𝛽 − 𝐶−1𝑋 ʹ𝑦) = 𝛽𝐶 ʹ𝛽 − 2𝑦𝑋𝛽 + 𝑦ʹ(𝑋𝐶−1𝑋)ʹ𝑦   

then (7) Can rewrite as follows: 

exp [−
1

2 𝜎2
 {(𝛽 − 𝐶−1𝑋 ʹ𝑦)

ʹ
 𝐶 (𝛽 − 𝐶−1𝑋 ʹ𝑦) + 𝑦ʹ(𝐼𝑛 − 𝑋𝐶−1𝑋 ʹ)𝑦    ]   ...     ( 8 ) 

The second part of (8) does not involve β, so we can reduce (8) as follows  

exp [−
1

2 𝜎2
 {(𝛽 − 𝐶−1𝑋 ʹ𝑦)

ʹ
 𝐴 (𝛽 − 𝐶−1𝑋 ʹ𝑦) ] …      ( 9 ) 

We can say that (9) is the multivariable normal distribution with mean  𝐶−1 𝑋 ʹ𝑦 and variance 𝜎2𝐶−1   . 

The second Conditional posterior distribution is for 𝜎2, π(𝜎2). The terms that involve 𝜎2 in the full joint distribution (6) are 

as follows 

(𝜎2)−
𝑛
2    (𝜎2)−𝛼−1    (𝜎2)−

𝑝
2 −

1

𝑒2𝜎
2 (𝑦 − 𝑋𝛽)́(𝑦 − 𝑋𝛽) −

𝜏

𝜎2
−
𝛽׳𝜆2𝐴𝛽

2𝜎2
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                               = (σ2)
−
n

2
−
p

2
−α−1   −

1

e2σ
2{(y−Xβ)

{λ2Aβ׳τ+β+(y−Xβ)׳
  ...     ( 10 ) 

           The formula (10) is the inverse gamma distribution with shape parameter 

(
𝑛

2
+

𝑝

2
+ 𝛼) and  Scale parameter    

(𝑦−𝑋𝛽)׳(𝑦−𝑋𝛽)

2
 +

𝛽 𝜆2𝐴𝛽׳

2
+ 𝜏 . 

The third part in the conditional posterior distribution of (𝑡𝑗). The parts of (6) involve (𝑡𝑗) are 

√
𝜆2

𝜎2

𝑡𝑗

𝑡𝑗−1
  𝑒
−
𝛽𝑗
2

2 (
𝜆2
𝜎2
 
𝑡𝑗
𝑡𝑗−1

)𝑡𝑗
−
1
2   𝑒

−
𝜆1
2𝜆2

𝑡𝑗

       

Then based on the (Chhikara and Folks 1988) works, the distribution of (𝑡 − 1) is the generalized inverse Gaussian 

distribution and defined as follows, 

(𝑡 − 1)~𝐺𝐼𝐺(λ= 
1

2
, 𝑎 =

𝜆1

4𝜆2𝜎
2 , χ= 

𝜆2𝛽𝑗
2

𝜎2
), …     ( 11 ) 

            Then,  (t − 1)−1 variable follows the full conditional inverse Gaussian distribution with μ =  
√λ1

(2λ2|βj|)
 and  λ =

λ1

4λ2σ
2 

.  See  (Chhikara and Folks 1988) for more details.   

The choosing of the Shrinkage parameters 𝜆1 and𝜆2 conducted by Following Li and Lin (2010) and Park and Casella (2008), 

they used the empirical Bayes procedure. we can take the log for the following functions and the maximization problem is 

solving as follows: 

 

𝜕𝑅

𝜕𝜆1
=
𝑝

𝜆1
+ 
𝑝𝜆1
4𝜆2

𝐸 [{𝛤𝑈 (
1

2
,
𝜆1
2

8𝜎2𝜆2
)}−1 𝜑 (

𝜆1
2

8𝜎2𝜆2
)
1

𝜎2
|𝜆(𝑘−1), 𝑦] 

 

−
𝜆1
4𝜆2

∑𝐸

𝑝

𝑗=1

[
𝜏𝑗

𝜎2
|𝜆(𝑘−1), 𝑦] 

 

𝜕𝑅

𝜕𝜆2
= − 

ρ𝜆1
2

8𝜆2
2  𝐸 [{𝛤𝑈 (

1

2
,
𝜆1
2

8𝜎2𝜆2
)}−1 𝜑 (

𝜆1
2

8𝜎2𝜆2
)
1

𝜎2
|𝜆(𝑘−1), 𝑦] 

 

−
1

2
∑ 𝐸
𝑝
𝑗=1 [

𝜏𝑗

𝜏𝐽−1
  
𝛽𝐽
2

𝜎2
|𝜆(𝑘−1), 𝑦] +

𝜆1
2

8𝜆2
2  ∑ 𝐸 

𝑝
𝑗=1 [

𝜏𝑗

𝜎2
|𝜆(𝑘−1), 𝑦],           ….(3.15) 

Where φ(t) = t−
1

2 e−t. 

4-Real Data Analysis 

     We will examine the proposed model and compare it with other models. Real-life case have studied based on the blood 

viscosity syndrome disease data by considering the blood viscosity syndrome as response variable (y), and the explanatory 

variables (X) The data collected from pathological analyzes of patients visiting the ASC disease in the province of Babylon 

Centre . In addition to a set of questions posed by the researcher to affected Persons, this work was conducted on a sample 

that included (n=97) Person. The following data contains  information that records visits of  blood  viscosity patients to 

Marjan Teaching Hospital in Babil Governorate Moreover ,  I used (97) models of different people , that is I took a simple 

the random sample , patients were drawn to study the factors affecting patients' blood viscosity ( response variable ), while 

the predictor  variables are as follows :     
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Blood viscosity sy ndrome 𝒚𝒊 

Person gender 𝑿𝟏 

Age of person 𝑿𝟐 

Environment / elevated / flat 𝑿𝟑 

Occupation 𝑿𝟒 

Anemia 𝑿𝟓 

Temperature 𝑿𝟔 

Genetics factor 𝑿𝟕 

Person weight 𝑿𝟖 

Blood pressure 𝑿𝟗 

Mental state 𝑿𝟏𝟎 

Kidney disease 𝑿𝟏𝟏 

Drink water and fluids 𝑿𝟏𝟐 

Congenital heart defects 𝑿𝟏𝟑 

Decreased plasma levels in the blood 𝑿𝟏𝟒 

Lung disease 𝑿𝟏𝟓 

Dietary pattern \ fats 𝑿𝟏𝟔 

Drinking alcoholic beverages 𝑿𝟏𝟕 

Playing sports 𝑿𝟏𝟖 
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The following table shows the values of the mean square error and the mean absolute criterions.   

Table (1)  Value of mean square error (MSE) and mean absolute  error (MAE) 

 

 

 

 

From table (1) the value of the quality model criterion (MSE) of the proposed method gives the less value comparing 

(MSE=19.077) with the MSE of the ENRM (MSE=23112). Also, the other quality criteria MAE of the proposed method 

gives the less value (MAE=9.236). Therefore, obviously t the proposed model works better than the other method. 

Table (2) Parameter estimates of the predictor variables 

Descriptive  variables  

 

 

Variables  �̂� BANETR �̂�ANETR 

Person gender 

 

 

            
           𝑥1  1.466 2.875 

Age of person 

 

 

𝑥2 
0.0044 0.000 

Environment / elevated / flat 

 

 

𝑥3 
0.000 0.122 

Occupation 

 

 

𝑥4 
0.287 0.000 

Anemia 

 

 

𝑥5 
0.000 0.000 

Temperature 

 

 

𝑥6 
0.370 0.000 

Genetics factor 

 

 

𝑥7 
0.716 0.000 

Person weight 

 

 

 

𝑥8 

0.000 0.000 

Smoking 𝑿𝟏𝟗 

Medicines and drugs 𝑿𝟐𝟎 

Increasing the amount of proteins in the blood 𝑿𝟐𝟏 

Methods MSE MAE 

BANETR 19.077                     9.236 

ANETR 23.112 13.243 
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Blood pressure 

 

 

𝑥9 
0.107 0.000 

Mental state 

 

 

𝑥10 
0.000 -0.0506 

Kidney disease 

 

 

𝑥11 
0.081 0.000 

Drink water and fluids 

 

 

𝑥12 
0.189 0.000 

Congenital heart defects 

 

 

𝑥13 
-0.020 0.000 

Decreased plasma levels in the blood 

 

 

𝑥14 
-0.271 -0.224 

Lung disease 

 

 

𝑥15 
0.364 0.000 

Dietary pattern \ fats 

 

 

𝑥16 
0.000 -0.243 

Drinking alcoholic beverages 

 

 

𝑥17 
0.650 0.000 

Playing sports 

 

 

𝑥18 
0.000 0.000 

Smoking 

 

 

𝑥19 
-0.182 0.000 

Medicines and drugs 

 

 

𝑥20 
-0.112 0.000 

Increasing the amount of proteins in the blood 

 

 

𝑥21 
0.000 0.000 

 

From table (2) the proposed model removed the irrelevant predictor variable that does not influence the response variable, So 

we can say that the proposed model provide variable selection procedure. For example, the parameter estimate of the  ( age of 

person) variable takes zero value, and so on for the other variables (  Age of person , Occupation , Anemia , Temperature , 

Genetics , factor , Person weight , Blood pressure , Kidney disease , Drink water and fluids , Congenital heart defects , Lung 

disease , Drinking alcoholic beverages , Playing sports , Smoking , Medicines and drugs , Increasing the amount of proteins 

in the blood ). Eventually, the relevant predictor variables that effects the response variable ( Blood viscosity) are (Person 

gender , Environment / elevated / flat , Mental state , Decreased plasma levels in the blood , Dietary pattern \ fats ). 

5- Conclusions 

The proposed model introduces new scale mixture of normal distribution mixing with Rayleigh distribution as Laplace prior 

distribution. New Bayesian hierarchical model and new Gibbs sampler algorithm for elastic net linear regression have 

developed. The real data analysis examined by the proposed model and compared the results with some exist regularization 

methods. The proposed method clearly shows that the penalized proposed method outperformed the other method from the 

variable selection procedure point of view.  
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