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Abstract : Regularization methods always focus on the selection of variables (vs) and estimation of regression 

parameters. So it is relied upon (vs) Because it is difficult to identify the important variables in the model, if the 

number of common variables is very large, and to choose the most effective variables in the model.  

In this paper, we proposed a new method for selecting an ordinal model . This method is Bayesian reciprocal bridge 

regression for the ordinal model (BOrBridge ), We have developed a new hierarchical Bayesian regression model 

Bayesian reciprocal bridge for the ordinal model (BOrBridge). Which motivates us to suggest a Gibbs sample New to 

sample parameters from the posteriors . The performance of the proposed approach was examined through simulation 

studies and real data analysis.  

The results show that our proposed method (BOrBridge) After comparing it with the AIC and BIC Identifying the 

best model in standard ordinal regression works very well  This also indicates the convergence of the construct-

specific Gibbs  samples to the  posteriors distribution, was quick and the mixing was good . The research reached 

important conclusions, represented by the superiority of the proposed method over existing methods in selecting 

variables and estimating parameters. 

1. INTRODUCTION: Linear regression is used to identify and describe the relationship between a dependent variable 

and a set of explanatory (independent) variables (Koenker and Bassett, (1982)). The first to refer to the term regression 

was the English scientist Galton (14 February 1822–January 1911) in an article he published in the late nineteenth 

century. It has wide applications in economics and engineering, as well as in various sciences such as agriculture, physics, 

medicine, and the social sciences (Bark, R., 2004).  

The linear regression equation can be written as (Kutner, Nachtsheim, Neter, and Li, 2005). : 

 

     
                                                  

 

where              is the     vector of centered             
  is the     matrix of standardized regressions 

,  is the     vector of coefficients to be estimated, and the vector of independent and identically distributed normal 

errors with mean 0 and variance    . The linear regression model tasted some conditions, such as the regression model 

being linear in parameters, the normality of the error distribution, the mean of residuals being zero, and the 

homoscedasticity (constant variance) of residuals. No autocorrelation of residuals ،the predictors and residuals are 

uncorrelated     . The variability in predictor values is positive. The predictors and responses are specified correctly. 

There is no perfect multicollinearity ( Berk, R. A. (2004), Peter D. correlated . The variability in predictor values is 

positive. The predictors and responses are specified correctly. There is no perfect multicollinearity ( Berk, R. A. (2004), 

Peter D Hoff, (2009)). But there is difficulty in realizing these conditions when there is an increase in the number of 

variants. A problem appears with estimation, and this needs to be reduced. This is the classic method . we resort to  the 

Bayesian way , where the parameters are random predictors that have a finite distribution 

 (Turki, 2019). Assuming that these parameters have preliminary  information that can be put in the form of a probability 

distribution (Abboudi, 1996). Suggest (Akaike (1974)) the information criterion. It is one of the most common criteria 

used to select the model that gives the most accurate description of the data displayed Nishii (1984). can be written 

asHoff, (2009)). But there is difficulty in realizing these conditions when there is an increase in the number of variants. A 

problem appears with estimation, and this needs to be reduced. This is the classic method . we resort the Bayesian way , 

where the parameters are random predictors that have a finite distribution. 

 (Turki, 2019). Assuming that these parameters have preliminary  information that can be put in the form of a probability 

distribution (Abboudi, 1996). Suggest (Akaike (1974)) the information criterion (    ). It is one of the most common 
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criteria used to select the model that gives the most accurate description of the data displayed. Nishii (1984). can be 

written as:  

                                            
 

where (   is the probability function calculated using a Markov chain estimator (   ), and (  ) is the total number of 

model parameters (Mallick, 2015). But of defects (      It is not suitable  when the –value n is high (Javed and Mantalos, 

2013; Bozdogan, 1987). To get rid of this problem, the researcher tends to use another criterion, such as the Bayesian 

information criterion(    ) (Schwarz, 1978).  

                                     
where      is the sample size that was suggested to address the      issue in the , and the model chosen will be consistent 

in choosing the right model with a probability of 1 (Javed and Mantalos, 2013; Mallick, 2015). It is known that  

            neither works better all the time Spiegelhalter et al. (2002) (George and McCulloch, 1993). Suggested 

generalizations     and      For model selection in normal linear hierarchical Bayesian models, the skewness 

information criterion is used(     ) Ando (2007). Dubai Internet City Choosing the best-equipped models despite 

providing very little information about them.   

 

One of the important models of regression is the ordinal model. It is a type of statistical data in which the common 

variants are in the form of ordered categories that can be arranged naturally (Zhou, 2006). And it has wide applications in 

psychology, climate, economics, political economy, social sciences, medicine, and many other sciences (AL-JABRI, 

2020).    

For example, Students' intelligence level (weak, average, high) in the low, medium, and high categories take the ranking 

values. Respectively. The high level is not a multiple of the average level. One of the problems with ordinal Regression 

ordinal is when the number of variants is large (Rahman, 2016). So it must be reduced. While a comparison of the models 

using the information standard shows the deviation ordinal models can provide a better-fit model compared to the ordinal 

probability model in classical methods( Rahman (2016)).   

          
When the number of variants in the ordinal is large, we use many methods to reduce it. Most of these methods are 

organizational methods. Examples of these methods are the bridge penalty (Frank and Friedman 1993). the least absolute 

shrinkage and selection operator (Lasso) penalty (Tibshirani 1996). The adaptive lasso penalty (Zou 2006). The elastic net 

penalty (Zou and Hastie 2005). The adaptive elastic net penalty (Zou and Zhang 2009). The smoothly clipped absolute 

deviation (SCAD) penalty (Fan and Li 2001). The group bridge penalty (Huang et al. 2009). And the adaptive bridge 

penalty (Park and Yoon 2011).  

 Finally, in this research, we use a new method, which is the ordinal regression model with penalty functions, such as: 

(rBridge).  

 

The paper is organized as follows. In Section. 2, we introduce the reciprocal Bayesian bridge regression parts, a 

regression algorithm for data subject to ordinal models based on the reciprocal Bayesian bridge regression Before th 

inverse uniform distribution section.3, carried out by means of simulations section.4, via real data example in section.5, 

We conclude briefly discussing in section.6,   

2.Mothed:   
2.1. Reciprocal bridge regression:   

Consider reciprocal bridge (r bridge) (Alhamzawi and Mallick 2020;zainab2022). Results from the following 

organizational problem:      

Let's say   
 

 
  

          
         ∑

 

    
 
 

 
    I{                    (4)  

where      Indicates the function of the pointer     It is the setting parameter that controls the degree of punishment.   

2.2.Bayesian reciprocal bridge regression for ordinal data   

The statistical model for ordinal regression is written as follows:  

     
                                                         

where      is      vector of covariates and a vector   is     of unknown parameters . Containing categories or results 

   through the cutoff point vector    as follows:   
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where  

  

   {

                  
                  

                 
                  

  

where       and      (see Jeliazkov et al., 2008). Following Alhamzawi(2016). The      for the    category of 

the observed response      is:  

        ⁄                ⁄   

     
         

            
      

        
       

where   is the standard normal      using     we can calculate         ⁄           as follows :  

        ⁄                         ⁄   

         
             

                 
  

We take into account the following issue with ordinal data:  

          
         ∑

 

    
 
 

 
     {    }           (7)  

where     Indicates the function . In this research, instead of minimizing problem (7), we solved it by adopting a 

Bayesian hierarchical model and sampling the regression coefficients using Gibbs' sample, in contrast to the iterative 

approach to solving (7). which has not yet been proposed . 

the equation (7) results in VS if         (Park and Yoon, 2011). The optimal subset selection, the Lasso regression, 

and the ridge regression, respectively, when          and      are three specific examples of the aforementioned 

equation (Mallick and Yi, 2017). Bayesian statistical inference rBridge regression it can be a tuning parameter λ An easy 

estimator as an automatic by-product of the Markov chain Monte Carlo .  

The r bridge penalty in (7) includes Many methods, such as the best selection of a subset,      (Song and Liang 2015). 

And his penalty       and reciprocal Ridge (rRidge) penalty       
3.priors  

Note the form of in reciprocal bridge (6) Mallick, Alhamzawi, and Svetnik (2020) and Alhamzawi and Mallick (2020). 

They show that estimates can be interpreted as reciprocal bridge According to ex-post-mode estimates when the 

regression coefficients are independent and identical to the inverse ex distributions Gaussian (IGG) prior distributions of 

the form:  

     
 

 
 
 
⁄

     
 
 
 ⁄
   
   { 

 

    
 
 

}  {    }   

     
  

       
   { 

 

    
 
 

}                        (8)  

where     is a shape parameter and     is a scale parameter. Gypsum samples can be sampled from this posterior 

using an extended hierarchy with unified inverse primes on the coefficients and independent gamma rates on their mixing 

coefficients (Mallick, Alhamzawi, and Svetnik 2020).  

  

       
  

  

   
 
 
 

⁄

 
 
 
 

       
 ∫       
     

 
 

                 (9)  

we assign the following prior distribution for (δ) :   

            
 

         
             

where                and                                  ⁄  

    ).  

we assign the following prior distribution for (  ) :  

     
  

    
    

 
 ⁄    
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where Г                             (
 
 

 

  )                   

For   ,we assign a Jeffery prior of the for   
 

 
 , which is a special case of gamma distribution when           

3.Bayesian heretical Modeling  
To proceed with a Bayesian inference, in this section, we use the same prior specifications for   the Non-informational 

preset fixed marginal scale on   and you have the following Bayesian hierarchical model:  

                          
          

       

      ∏
 

           
    

  

 
      

     ∏              
 
     

            
 

         
             

  
 

 
  

the parameters of interest (         can be sampled as listed in Algorithm  

 

4.MCMC sampling  
                         

Algorithm : for the Bayesian reciprocal bridge for Ordinal Model 

 

Using the data augmentation approach as which is described in( Albert and Chib (1993)), Alhamzawi (2016).An 

Gibbs sampling Method for the ordinal model is designed by updating          , from their full conditional 

distributions .  

            
                        
                             

1-Sample         ( ̂     
         ∏      

 
   |  

 

  
    

2-Sample        ∏                   
 
    

 

    
 
 

  

3-Sample                         
 

 
  

4-Sample    a uniform distribution on the interval [                                               
                

5.Simulation studies 
Empirical simulation results are presented here to demonstrate the performance of the proposed method. In 

this section, three simulation studies were used to demonstrate the performance of the proposed method in 

ordinal models, referred to as “BOrBridge”. The performance of our proposed methods BOrBridge is 

compared with the Akaike’s information criterion (AIC; Akaike, 1998) and the Bayesian in- formation 

criterion (BIC; Schwarz, 1978). We run our proposed Gibbs sampler for 14,000 iterations, after a burn-in 

period of 2000 iterations. Convergence of the proposed Gibbs sampler was conducted using the 

multivariate potential scale reduction factor (MPSRF) (Brooks and Gelman, 1998) which is given by 

(Alhamzawi, 2016): 

 

      
   

 
 (

   

 
)     

 

where   is the largest eigenvalue of the matrix              denote a parameter vector  of interest,    denote 

the     of  the   iterations of   in chain s ,  for         (   ) and  

       
 

   
 ∑   ̅̅ ̅

 

   

    ̅̅ ̅̅      
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  ∑    

 
     

  

 

 

5.1. Simulation study 1 

We generate data from the true model, 

 

     
                                             (10) 

where                                                    
   and   

                          including the intercept term. This simulation study is corresponding to 

very sparse case. The predictors are generated independently from          with       = 

0.75        where    refers to the (f, m)
th

 entry of 
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Table 1:  Number of observations corresponding to the categories of y in Simulation 1 

 

Simulation 1 y=1 y=2 y=3 y=4 y=5 

 
32 68 68 27 5 

 
 

Table 2: Comparing average numbers of correct and wrong zeros for the best model in 

Simulation study 1, averaged over 100 simulations. In the parentheses are standard deviations.  

Our proposed method BOrBridge is compared with AIC and BIC. 

 

  Methods  

BOrBridge  AIC BIC 

correct 8.42 (0.23)  6.23 (0.59) 6.48 (0.59) 

wrong 0.00 (0.00)  0.17 (0.29) 0.17 (0.13) 

 

the matrix     
    

The outcome of interest y were calculated based on the cut-point vector δ = (0, 1, 2, 3  , 
yielding five categories which are listed in Table 1. In this simulation study, AIC and BIC 

are used to select the best model in the standard ordinal regression model. We summarized 

the results of BOrBridge, AIC and BIC in Table 2. The results show that the proposed 

methods BOrBridge performs very well compared with AIC and BIC in terms of selecting 

the correct model. BOrBridge gives more correct zero coefficients than AIC and BIC. 

Figure (1) shows that the MPSRF for the proposed method BOrBridge becomes stable and 
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close to 1 after about 2000 iterations. This shows that the convergence of our Gibbs sampler 

to the posterior distribution was quick and the mixing was good.   
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Figure 1: MPSRF for the proposed method BOrBridge in Simulation 1.  

5.2. Simulation study 2 

This simulation study is  the  same  as  Simulation  1,  except  that  we  set  β  = (1, 1, 0, 1, 

0, 1, 0, 1, 0, 1, 0  , including the intercept term. This simulation study is corresponding to 

sparse case.  Similar to Simulation 1, the outcome of interest y were calculated based on the cut-

point vector δ = (0, 1, 2, 3  , yielding five categories which are listed in Table 5. 
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Figure 1: MPSRF for the proposed method BOrBridge in Simulation 1.  

5.3. Simulation study 2 

This simulation study is  the  same  as  Simulation  1,  except  that  we  set  β  = (1, 1, 0, 1, 

0, 1, 0, 1, 0, 1, 0  , including the intercept term. This simulation study is corresponding to 

sparse case.  Similar to Simulation 1, the outcome of interest y were calculated based on the cut-

point vector δ = (0, 1, 2, 3  , yielding five categories which are listed in Table 5. 
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Table 3: Number of observations corresponding to the categories of y in Simulation 2 

 

Simulation 2 y=1 y=2 y=3 y=4 y=5 

 
78 22 22 21 57 

 
 

Table 4: Comparing average numbers of correct and wrong zeros for the best model in 

Simulation study 2, averaged over 100 simulations. In the parentheses are standard deviations.  

Our proposed method BOrBridge is compared with AIC and BIC. 

 

  Methods  

BOrBridge  AIC BIC 

correct 4.33 (0.19)  3.78 (0.47) 3.90 (0.72) 

wrong 0.00 (0.00)  0.47 (0.38) 0.34 (0.32) 

   

 

 

BOrBridge 
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Figure 2: MPSRF for the proposed method BOrBridge in Simulation 2. 

 

The results of BOrBridge, AIC and BIC were listed in Table 
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4 which shows that the proposed method BOrBridge perform very well compared with the 

other methods in the comparison. This table shows that our method gives more correct zero 

coefficients than AIC and BIC. Figure (2) shows that the MPSRF for the proposed 

method BOrBridge becomes stable and close to 1 after about 2000 iterations. 

 

 Table 5:  Number of observations corresponding to the categories of y in Simulation 2 

 

Simulation 2 y=1 y=2 y=3 y=4 y=5 

 
24 19 26 62 69 

 
 

Table 6: Comparing average numbers of correct and wrong zeros for the best model in 

Simulation study 3, averaged over 100 simulations. In the parentheses are standard deviations.  

Our proposed method BOrBridge is compared with AIC and BIC. 

 

  Methods   

 BOrBridge  AIC BIC 

correct 6.19 (0.24)  4.56 (0.71) 3.17 (0.64) 

wrong 0.00 (0.00)  0.37 (0.26) 1.42 (0.29) 

 

5.3.Simulation 3 

We consider the correct model   

     
                                                       

 

where 

                                                
 
 
        

                                                                  [                        
                                         are mutually independent  from           The 

outcome of interest   were obtained based on the cut-point vector                  yielding 

five categories. 

The results of this simulation study were summarized in Table 4 which shows that the 

proposed method BOrBridge perform very well compared with the other 

method in the comparison. Again, the results show that the proposed method produces 

more correct zero coefficients than AIC and BIC. Figure (3) shows that the MPSRF for the 

proposed method BOrBridge becomes stable and close to 1 after about 2000 iterations. 
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Figure 3: MPSRF for the proposed method BOrBridge in Simulation 3  
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5.4. Real Data  Anal ysis 

  

5.4.1. Tax Policy 

 

In this section, we compare the performance of the proposed method, BOrBridge on the tax policy data. This 

data set was analyzed by Rahman (2016) in a study on a subject of extended political debate with respect to the 

definition of benchmark income, beneficiaries of the tax cuts, and whether it would spur sufficient growth. The 

dependent variable has three categories. The data consist of 7 covariates: indicator for individual being 

employed (employed), indicator for household income > $75, 000 (income), individual’s highest degree is 

Bachelors (bachelors), highest degree is Masters (bachelors), Professional or Doctorate (post bachelors), 

Individual or household owns a computer (computers), individual or household owns a cell phone (cellphone) 

and Race of the individual is white (white). The results of parameter estimation are summarized in Table 1, 

which shows that both approaches have very similar results. Again, Figure (1) shows that the MPSRF for the 

proposed method BOrBridge become stable and close to 1 after about 2000 iterations.  
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Table 1: Posterior mean (mean) and standard deviation (std) of model parameters for the tax policy application .  

 

 

 

Method  

BOrBridg

e 

 

 

Intercept 

 

2.21 (0.39) 

 

Employed 0.17 (0.21)  

Income -0.39 

(0.27) 

 

Bachelors 0.05 

(0.29) 

 

Post-

bachelors 

0.43 

(0.45) 

 

Computers 0.59 

(0.37) 

 

Cellphone 0.82 

(0.35) 

 

White 0.03 

(0.41) 

 

 

 

Hence, both the simulation studies and real data example support the proposed method. 
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Figure 1: MPSRF for the proposed method BOrBridge in Tax Policy data. 
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5.5.Conclusions and Future Research 

The research proposes a Bayesian reciprocal bridge estimation method for univariate ordinal models. Specifically, Clear 

advantages over existing approaches include efficient Gibbs sampler and use of data augmentation to allow ordinal 

outcome of interest. The main contributions and future research topics are listed below.   

5.5.1.Main Contributions  

Research introduces the Bayesian inference of regression models for univariate ordinal data, and proposes method that 

can be extensively utilized in a wide class of applications across disciplines including medicine, biological studies and 

social sciences. 

Bayesian reciprocal Bridge regression for ordinal data. We develop a Gibbs sampler methods for sampling from this 

posterior distributions using the latent variable inferential framework of Albert and Chib (1993).  

The proposed method are applied to three simulation studies and a real data example and compare the results with AIC 

and BIC. It is found that the performance of the proposed method is better than AIC and BIC.  

5.5.2. Recommendations for Future Research  

The work proposed in this research opens the door to new research directions for Bayesian regularization in ordinal 

models. One of these directions, the proposed methods can be extended to ordinal quantile regression models by assuming 

the error distribution follows the asymmetric Laplace distribution and using the normal exponential mixture representation 

of the asymmetric Laplace distribution. 
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