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Abstract :    In this paper we use the nonparametric  methods to estimate the time series models , which is different of 

the parametric methods, in which the data is given the opportunity to express itself and the principle of  letting the 

data speak for itself  and  estimating the time series model.  The time series  were used representing  the   monthly 

final prices of a barrel of  Iraqi crude oil in US dollars for the  period from January 2003 to June 2020 by 210 

observations . we use  some non-parametric methods such as the Kernel Smoothing method represented by  

Nadaraya- Watson (NW) and local polynomial. So, we use some different methods to choose the smoothing 

Parameter, such as  the plug -in method, smoothing cross validation method  and  Least Squared Cross Validation 

method , and some precision criteria such as (MSE, MAE, MAPE). We  have been calculated to compare  between 

the applied  method  models.   We found that  the  cubic polynomial estimator (CU)    is  the best nonparametric 

method to estimate the    monthly final prices of a barrel of  Iraqi crude oil time series model 

INTRODUCTION: Observations are often successive through time, and future values usually depend on the random 

behavior of available observations in the past. This dependence makes it useful to predict the future from those values 

in the past, in addition to the basic dynamic from which the observed data is generated, so the series can be defined. 

Time Series is define as the data arranged depending on time, this means that the time series is a group of observations 

related to each other, which are recorded for a certain phenomenon in previous time periods and are arranged 

sequentially according to time, and one of the benefits of time series is to understand the underlying dynamic that is 

create existing data, predict future events, and control future events through intervention[3] . Nonparametric ideas are 

being applied since a long time is smoothing and decomposing seasonal time series. Local polynomial regression can 

be traced back to 1931 (R.R. Macaulay). A. Fisher (1937) and H.L. Jones (1943) discussed a local least squares fit 

under the side condition that a locally constant periodic function (for modeling seasonal fluctuations) be annihilated 

and already in 1960 J. Bongard  developed a unified principle for treating the interior and the boundary part (with and 

without seasonal variations) of a time series derived from a local regression approach[7 ]. Nonparametric regression 

has become an area with an abundance in new methodological proposals and developments in recent years .In this 

paper  we discuss the application of some nonparametric techniques to time series .There is indeed a long tradition in 

applying nonparametric methods in time series analysis, In contrast to that in nonparametric regression no assumption 

is made about the form of the regression function. Only some smoothness conditions are required. The complexity of 

the model will be determined completely by the data. One lets the data speak for themselves.  one avoids subjectivity 

in selecting a specific parametric model. But the gain in exibility has a price. Besides this, a higher complexity in the 

mathematical argumentation is involved. 

2. Non-Parametric Smoothing 
The nonparametric smooth method can provide a flexible tool for analyzing unknown regression relationships, This 

tool is used to describe the direction and effect of the explanatory variable on the response variable, and this tool can 

be represented as a function in terms of one or more explanatory variables. A typical situation for an application to a 

time series {zt} is that the regressive vector{X} consists of past time series values 

Xt = (zt-1,…… , zt-p) 

which leads to the  general nonparametric auto regressive model 

zt = m(zt-1,…… , zt-p) + at          , t = p + 1,p + 2 ,…..                                (1) 

with {at} a white noise sequence. Of course {xt} might also include time series values of other predictive variables 

like leading indicators[7] .The function (m) in the formula (1) is the nonparametric regression function as it relies on 

the data to determine the space of the function( m) and that the researcher assumes only the preamble properties, 

which are (continuity, derivability, or derivative with the square integral of the second derivative) that you have the 

function m. The result of using nonparametric methods in estimating    t    ta   a     t        t    (   ).          , 

we will deal with two types of nonparametric methods which are Kernel  

2. Kernel estimation in time series 
The kernel smoothing provides a statistical method for estimating the nonparametric regression function or for 

estimating the conditional prediction function, as it aims to find a nonlinear relationship between pairs of random 

variables as well as to find a structure or pattern of data that enables us to find the structure of a set of data without  

need  a parameterized model, as this smoothing represents estimation of the regression function shown in formula (1) 

at a given point based on locally. When a kernel estimator is applied to dependent data, as it is the case in time series, 
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then it is effected only by the dependence among the observations in a small window and not by that between all data. 

This fact reduces the dependence between the estimates ,so that many of the techniques developed for independent 

data can be applied in these cases as well. This fact was called the whitening by windowing principle by Hart (1996). 

The first step to go is therefore to look at nonparametric estimation of densities and conditional densities. Let x j   IR
p
 

be vector a random variable whose distribution has a density (f )and let zt-1, ……..,zt-p be a random sample from x . 

Then a kernel density estimator for( f ) in time series applications frequently product kernels are applied is given by[ 

7] 
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where K is a so-called kernel function, i.e. a symmetric density assigning weights to the observations zij which 

decrease with the distance between zi and zj. Some popular kernel functions are listed in Table (1). hj is the bandwidth 

which drives the size of the local neighborhood being included in the estimation of (f )at z j . A very small bandwidth 

will lead to a wiggly course of the estimated density, whereas a large bandwidth yields a smooth course but will 

possibly atten out interesting details. 

                               Table (1) some of the kernel functions 
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2.1 Nadaraya-Watson Estimator 
We will just give a very brief  introduction to the most well-known local weighted average estimator, the Nadaraya-

Watson estimator. The estimator can be also be though of as local constant estimator which is a special case included 

in the local polynomial estimator that we will introduce later.[7]  

In general let the random vector be ( ,  ), zϵR, xϵR ^ 
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 Our goal is to predict a point by estimating m ( ) and using  conditional expectation of equation (1). The conditional 
expectation. 
m ( )=E ( ⁄ ) 

  ( )  ∫   (  ⁄ )        ( )                                       
 

  
 

Substituting equation (2) into equation (3), we get The Nadaraya-Watson estimator is defined as: 
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It is easy to verify that the estimator is the weighted sum of zi, that  

  ( )  ∑       (        ) 
        ……………(4) 

The estimator can handle both fixed design and random design with non-uniform distributions. It also can be easily 

extended to multivariate cases.[7] 

2.2 Local Polynomial Regression 
Local polynomial regression was introduced into the statistical literature by Stone (1977) and Cleveland (1979). The 

statistical properties were investigated by Tsybakov (1986), Fan (1993), Fan and Gijbels (1992,1995), Ruppert and 

Wand (1994) and many others. A detailed description may be found in the book of Fan and Gijbels (1996).[7 ] 

The local polynomial regression estimator that has gained wide acceptance as an attractive method for estimating the 

regression function and its derivatives. Some of its advantages are the better boundary behaviour, its adaptation to 

estimate regression derivatives, its easy computation and its good minimax  properties ,among others. This estimator is 

obtained by fitting locally to the data a polynomial of degree p, using weighted least squares. More specifically, m is 

assumed to be smooth in the sense that the (p+1)th derivative exists at x, so that it can be expanded in a Taylor series 

a      x .     l  al p ly    al   t  at        (x)            a  t   val  , β0, t at       z   
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With the design matrix X having the n rows [1; xi – x,….. , (x  - x)
r
], the diagonal weight matrix W = diag K(xi-x/h ) 

and the vector z = (z1….. , zn)
T
 the solutions at 

x is given by 
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In the particular case of p = 1,2,3 the local linear ,quadratic and cubic polynomial estimator is obtained.[12] 

3.Parameter selection 
The problem of selecting the smoothing parameter, which controls the bandwidth, is one of the main problems facing 

the researcher when estimating the nonparametric regression function as well as in the prediction process for the time 

series. It is the vital component of the estimation process for the function m and controls the neighbor width of point x 

at which the estimate is [x-h, x + h] .It is well known that in practice the choice of the kernel is not very important 

compared to the choice of the bandwidth. The most important task in kernel smoothing is the bandwidth selection. It is 

very well-known that a large bandwidth would give over smoothed estimations, with a large bias. On the other hand, if 

the bandwidth is too small, the estimation becomes under smoothed and the its variance gets large. An optimal 

bandwidth is achieved when the changes in bias and variance balance .There are plenty of papers that have dealt with 

the problem of bandwidth selection for independent data, but, under dependence, this problem has been much less 

studied. In general, there are three different types of selecting  methods.[3] 

3.1 Plug-in method 
They are based on the idea of obtaining the bandwidth that minimizes some estimation of the asymptotic mean 

integrated squared error of the estimator (or some other global or local error measure). Their performance is good in 

the fixed design case but much worse in the random design case under dependence for more details see Ruppert , 

Sheather and Wand (1995). In time series applications we are mainly interested in a constant, global bandwidth, for 

which the integrated mean squared error (IMSE)[3] 
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By minimizes the above criterion, we get the constant optimal bandwidth. 
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And  Hm is the second derivative matrix of the function (m) 

3.2 cross-validation method 
When using the cross-validation bandwidth selector it is very important to know if the aim is to estimate the regression 

function in a whole region. The bandwidth (h = hcv) is chosen as it depends on minimizing the cross-validation 

function, i.e. finding the least squares.[12] 

          …………………..( 10 )      ( )=n
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 Where  as when estimating the function (m) each time it leaves one value (Leave one out) of(m) at xj, meaning that 

the observation (zj, xj) is not used in the estimation procedure . 
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I.This  global cross-validation bandwidth, hGCV , is obtained by minimizing the fun t    CV ( ),     g t   w  g t  ω 

(xJ) = 1, for every j. 

II.The value hLCV will be obtained as the minimizer of CV (h) with weight function 

 (  )=∏  ( 
        

    
) 

    

4. Comparative criteria  
There are several criteria for comparison between prediction methods and for the same time series in order to assess 

the accuracy of prediction within the sample and from these standards (MSE, MAE, MAPE) and therefore the best 

method that can be adopted is the one that gives the least error among those criteria.[12 ] 
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5. A practical side  
The practical side will include the application and analysis of the methods presented in the theoretical side to the final 

price time series data for oil in Iraq in US dollars The data provided by OPEC greatly facilitated the task of data 

analysis. The studied data was analyzed on the ready-made software package R. To estimate the appropriate model for 

the original oil price series using first some nonparametric methods such as the Kernel Smoothing method represented 

by Nadaraya Watson (NW) and local polynomials to different degrees and depending on some different methods of 

selecting the smoothing parameter, whereas the plug -in method,  Smoothing Cross Validation method and the Least 

Squared Cross Validation method . Some of the accuracy criteria such as (MSE, MAE, MAPE) were calculated to 

make a comparison between the estimated models to choose the best estimated model . The time series has been 

drawn  as shown in Figure (1), which represents the time series of monthly oil prices for the period studied. It is clear 

from the graph that the monthly oil price series in Iraq is a non-linear time series and contains clear fluctuations in its 

historical behavior, which suggests to it is an non stationary series in mean and variance. 

 
 Figure (1) represents the time series of monthly oil prices for the period   studied, represented by the period from 
January 2003 to June 2020. 
The selection of autoregressive variables is one of the important steps in analyzing the time series and to determine the 

time-lagging variables affecting the variable in the current time. Observations of the time series (Zt) are drawn with 
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the autoregressive variables of the time lag with several time shifts starting from the displacement (t-1) , we  show 

from the figure (2) that the relationship between Zt and Zt-1 is a very strong linear relationship and so for the 

relationship between Zt and Zt-2,Zt-3,Zt-4,Zt-5 ,  but when drawing the relationship between the time series (Zt) with the 

self-regression variable with the time lag (t-6), that is, with the variable (Zt-6), it was shown that there is a nonlinear 

relationship between them, as shown in Figure (3) which shows the shape of the propagation of the points other than 

Linear, therefore, we adopted this non-linear relationship between time series observations and time-delay 

autoregressive variables (t-6) as a basis for building a nonparametric prediction model for the time series and adopting 

it for the purposes of analysis and estimation by nonparametric methods presented in the theoretical side. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
                          
                             
Figure (2) the time series (Zt) with time-delay autoregressive variables (Zt-1). 
 

 
Figure (3) Observations of the time series (Zt) with time-delayed auto-regressive variables (Zt-6). 

4. Selecting the smoothing parameter (SP) 
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4.1   Plug-in Method : 
The Plug-in Method was used to select the smoothing parameter to estimate the function model using the Kernel 

methods represented by the Nadaraya Watson (NW) method, local linear polynomial (LL),  quadratic polynomial 

(QU) and the cubic polynomial (CU) , the results of the precision criteria   (MSE, MAE, MAPE) for estimation  

methods are shown  in Table (1) 

Table No. (1) shows the results of accuracy standards (MSE, MAE, MAPE) from the application of the smoother 
Nadaraya Watson (NW) and local polynomial in degrees (P = 1,2,3) by plug-in method. 

It is noticed that the estimator of the cubic polynomial (CU) was the best among the estimators that used the Plug-in 

Method because the values of the precision criteria (MSE, MAE, MAPE) were the lowest values   

MSE = 940.8777                MAE = 24.70608                  MAPE = 0.4310798 

The reason is due to an increase in the smoothing due to an increase in the degree of the polynomial. 

4.2 Cross-validation method: 
The Smoothing Cross-Validation method (SCV) method was used to select the smoothing parameter to estimate the 

function model using the Kernel methods represented by the Nadaraya Watson (NW) method, local linear polynomial 

(LL),  quadratic polynomial (QU) and the cubic polynomial (CU) , the results of the precision criteria (MSE, MAE, 

MAPE) for estimation  methods are shown  in Table (2) 

Table (2) illustrates the results of the precision criteria (MSE, MAE, MAPE) by applying the graders of Nadaraya 
Watson (NW) and the local polynomial of grades( P = 1,2,3) using the (SCV) method 

MAPE MAE MSE SP Methods 

0.4543394 26.00414 2001.9760 SCV 
h2=6.129657 

NW 

0.4360795 25.01575 948.4200 SCV 
h2=6.129657 

LL 

0.4343960 24.90906 950.8190 SCV 
h2=6.129657 

QU 

0.4308521 24.69279 939.9207 SCV 
h2=6.129657 

CU 

we note from the results  in Table (3)  the following : 

It is noticed that the estimator of the cubic polynomial (CU) was the best among the estimators that used the 

smoothing cross-validation method (SCV) h2 because the values of the precision criteria (MSE, MAE, MAPE) were 

the lowest values  

 MSE = 939.9207             MAE = 24.69279                 MAPE = 0.4308521 

The reason is due to the increase in the degree of the polynomial. 

4.3 The method of least squares cross-validation: 
The least squares cross-validation method (LSCV)h3 was used to select the smoothing parameter (SP), whose value 

was (h3 = 3.747988) to estimate the function model using the Kernel core methods represented by the Nadaraya 

Watson method (NW) ,local linear polynomial (LL) , quadratic polynomial (QU) and the cubic polynomial (CU) 

where the results were the precision criteria (MSE, MAE, MAPE) for the estimation methods as in Table (3) 

Table No. (3) illustrates the results of the precision criteria (MSE, MAE, MAPE) by applying the graders of 

Nadaraya Watson (NW) and the local polynomial of grades (P = 1,2,3) using the (LSCV) method. 

MAPE MAE MSE SP Methods 

MAPE MAE MSE SP Methods 

0.4545813 26.01818 1003.6671 Plug-in 
h1=6.187525 

NW 

0.4361376 12.02070 849.4967 Plug-in 
h1=6.187525 

LL 

0.4344807 24.91605 951.2486 Plug-in 
h1=6.187525 

QU 

0.4310798 24.70608 940.8777 Plug-in 
h1=6.187525 

CU 
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0.4435635 25.31080 965.3520 LSCV 

h3=3.747988  

NW 

0.428840 24.73121 939.2629 LSCV 

h3=3.747988  

LL 

0.4249746 24.31351 911.4567 LSCV 

h3=3.747988  

QU 

0.4125501 23.86001 888.2284 LSCV 

h3=3.747988 

CU 

By noting the results that were reached in Table (3) from using the Least Squares cross-validation method (L SCV) h3 

to choose the smoothing parameter, we note the following 

It is noted that the estimator of the cubic polynomial (CU) was the best among the estimators that used the Least 

Squares cross-validation  (LSCV) method because the values of the precision criteria (MSE, MAE, MAPE) were the 

lowest values where they were equal. 

MSE = 884.2284           MAE = 23.86001             MAPE = 0.4125501 

The reason is due to the increase in the degree of the polynomial. 

Through the results of Tables No. (1), Table No. (2) and Table No. (3), we conclude that the estimator of the cubic 

polynomial (CU) was the best smoothing method using the Kernel function and for all methods of selecting the 

smoothing parameter because the values The comparison criteria were the lowest values, and this indicates that the 

best estimate depends mainly on the smoother first method in addition to the method of selecting the smoothing 

parameter. 

The cubic polynomial calibrator (CU) can be shown using the smoothing parameter selection method (LSCV) as 

shown in Figure(4) 

 
Figure (4) a cubic polynomial curve (CU) using the LSCV method for bandwidth selection. 

6-Conclusions: 
1.The Cubic Polynomial (CU) estimator was the best among the estimators that used the Plug-in method because the 

values of the precision criteria (MSE, MAE, MAPE) were the lowest. 

2. The cubic polynomial regulator (CU) was superior to the other estimators that used the smoothing cross-validation  

method (SCV) h2 because the values of the precision criteria (MSE, MAE, MAPE) were the lowest. 

3 The cubic polynomial (CU) estimator was the best one that used the Least Squares cross-validation(LSCV) method 

because the values of the precision criteria (MSE, MAE, MAPE) were the lowest. 

4. Through the results of paragraphs 1,2 and 3, we conclude that the cubic polynomial estimator (CU) was the best 

method of smoothing using the Kernel function and for all methods of selecting the preamble parameter because the 

values of the precision criteria (MSE, MAE, MAPE) were the lowest values and this indicates that the best estimation 

using The kernel function depends mainly on the bootstrap method in addition to the smoothing parameter selection 

method. 
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